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The prevalence of digital recording devices, the cheap cost of data storage as well as the con-

venience provided by the widely accessible Internet have created the demand to retrieve infor-

mation according to users’ requests from multimedia data sources. However, the multimedia

information retrieval task has several challenges that need to be addressed, such as bridging the

semantic gap, modeling from imbalanced data sets, and utilizing inter-concept relationships to

enhance the retrieval performance of an individual concept.

To respond to the challenge of bridging the semantic gap, subspace modeling methods are

proposed to address this issue as a classification task. The proposed subspace modeling methods

construct a principal component (PC) subspace for each class, where the PCs are derived from

the instances belonging to that class. The PCs are selected and ranked based on Fisher’s criterion

to reduce the searching effort and an iterative searching is utilized to determine the best PC set.

Subspace modeling methods are proposed in this dissertation, including multi-class subspace

modeling (MSM), binary-class subspace modeling (BSM), and subspace modeling on global

and local structures (SMGL). Comparative experiments show that MSM, BSM, and SMGL can

outperform some other well-known algorithms on a number of benchmark data sets.

To address the data imbalance challenge, two clustering-based subspace modeling methods

called clustering-based subspace modeling (CLU-SUMO) and class selection and clustering-

based subspace modeling (CSC-SUMO) are proposed. K-means clustering and/or semantic

concept labels are used to partition the majority class (usually the negative class) into several

groups, each of which is merged with the minority class (usually the positive class) to form a
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much more balanced subset of the original data set. Then, the subspace model learned from the

original data set is integrated with all the subspace models learned from the balanced subsets to

form a classification framework. The experimental results on news and broadcast video data sets

support the claim that the proposed CLU-SUMO and CSC-SUMO render better classification

performance than some existing techniques that are commonly used to handle the data imbalance

problem.

Finally, two ranking strategies that consider the inter-concept relationships are proposed to

enhance the retrieval performance from the classification models of a target concept. The co-

occurrence class between the target concept and the reference concept is generated and multiple

corresponding analysis (MCA) is adopted to capture the correlation between the feature-value

pairs (a partition of the attribute values) and one co-occurrence class PP (a class consisting of

the instances containing both target concept and reference concept). Such correlation informa-

tion is used to refine the ranking results from the classification models of the target concept to

provide the final ranking scores. The effectiveness of all ranking strategies are attested by the

experimental results on public news and broadcast video data sets as well as some image data

sets, which demonstrates that the performance of the retrieval results is significantly improved

after the proposed ranking strategies are applied.
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Chapter 1

Introduction

1.1 Multimedia Information Retrieval

Plain texts used to be a primary way to record and distribute information, but people

prefer vivid images or videos and the accompanying audio, because they can provide a

better experience for receiving and digesting new information. However, compared with

text, multimedia data such as images, audio, and videos usually require much larger

disk spaces for storage. In the past decades, these images, videos, and audio served

mainly as the auxiliary information to the plain text to help understand the contents.

Now, with the advance of Internet techniques, the extensive application of compression

approaches, the cheap cost of data storage, and the prevailence of digital devices such as

videocassette recorders and digital cameras, multimedia information is generated at an

explosive speed and used in many applications. There is an urgent demand to retrieve

the multimedia information from such a large multimedia data collection.

A common way to retrieve multimedia information is to search by the keywords.

For example, the videos on Youtube are often accompanied with a brief description

of the uploaded content or other text information given by the users. Each image on

Flickr is always attached with a number of user-defined tags. These text data enable

1
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the retrieval of multimedia information via keywords, a very similar way to information

retrieval from text documents. However, such a keyword-based information retrieval

method may face the following difficulties.

• No text in f ormation available: Videos and images are often provided without

any text data. Therefore, it requires huge human efforts to add related text in-

formation to the videos and images to make keyword-based retrieval applicable.

Usually, such a labor-intensive effort is rather costly in terms of money and time.

• Noisy and incomplete keywords: Some text information provided by the users

are irrelevant to the content of the images and videos. For example, an image that

depicts a scene of autumn might have these irrelevant tags such as “beautiful”, “so

cool”, and “photoshot?”. The irrelevant text information could compromise the

effectiveness of the adopted keyword-based retrieval algorithm. In addition, it is

often hard and even impossible to fully describe all the content within the videos

and images. However, such an incomplete representation of the content could

also compromise the retrieval effectiveness and lead to unsatisfactory retrieval

results.

In response to the aforementioned difficulties of keyword-based information re-

trieval, content-based information retrieval methods were proposed [1, 2]. In content-

based information retrieval, the contents of images and videos are described by low-

level features, such as color, texture, shape, and other information directly extracted

from the images and videos. However, these low-level feature-based approaches often

fail to meet the users’ demands to retrieve high-level semantic information because of

the so-called semantic gap issue [3] (to be discussed in Chapter 1.2). To narrow the

gap between the high-level semantic content information and the low-level feature rep-

resentation, semantic concept descriptors were proposed to serve as the intermediate
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features to assist video retrieval [4, 5]. Some semantic concept detectors have shown,

by experiments, to provide a satisfactory detection accuracy to those concepts that are

related to people (face, anchor), location (outdoor, vegetation), object (car/truck/bus),

event (sports event), and others [6]. Hauptmann et al. [7] further reported that a few

thousands of such semantic concepts could be enough to ensure accurate video retrieval.

However, despite the early success of applying visual content descriptors to aid seman-

tic information retrieval, there are still several challenges to be addressed.

• How to bridge the semantic gap between semantic concepts and low-level f eatures?

• How to handle the data imbalanced problem when building models to map

low-level f eatures to semantic concepts?

• How to achieve e f f ective semantic concept detection and retrieval ?

1.2 Semantic Gap

Generally speaking, the semantic gap is the disconnection between the digitalized data

that can be recognized by the modern computer systems and the conceptual under-

standing in the minds of human beings. Smeulders et al. [3] described the semantic

gap as “the lack of coincidence between the information that one can extract from the

visual data and the interpretation that the same data have for a user in a given situation”.

For a given image containing a target concept (such as “tree”), human beings are able

to interpret both the low-level information (such as color, shape, and texture) and the

high-level target concept (such as “trees”) and other surrounding objects (such as “sky”

and “house”). Computers can interpret low-level features in the binary presentation.

However, it is hard for computers to recognize the target concept (tree) from binary

digits, though it seems not to be a problem at all from humans’ perspectives. Such an

inconsistency between the low-level descriptors (like color, shape, texture, and so on)
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and high-level semantic concepts (like “tree”, “sky”, “house”, and the like) leads to the

well-known “semantic gap”.

One way to bridge the semantic gap between the low-level features and the seman-

tic concepts is to make use of the techniques from the computer vision domain. Since

humans usually describe the semantic contents via keywords, some research work pro-

posed keyword-based approaches to learn the mapping between the objects in the im-

ages and a list of keywords. Duygulu et al. [8] proposed a machine translation model

to translate the segmented image regions into a few keywords. A two-stage linking

method was proposed by Kutics et al. [9] to first map the low-level features to the

related keywords and then assign these keywords to the images in the second stage.

Unlike region-based methods, Fan et al. [10] proposed an object-based approach that

used salient objects for image content representation to achieve a mid-level understand-

ing of the image content. They further proposed a hierarchical classification frame-

work [11] in which the salient objects are used for image content representation and

feature extraction. However, the region-based and object-based approaches rely on im-

age segmentation techniques that are rather sensitive to illumination and sophisticated

backgrounds. On the other hand, image-based approaches showed their merits: the fea-

tures were extracted from the whole image and did not require any image segmentation.

Recently, the bag-of-words representation of local visual feature descriptors (such as

scale-invariant feature transform (SIFT) [12] features) has shown to render promising

performance in image and video retrieval [13, 14].

There are also research works focusing on relevance feedback [15, 16, 17]. Users

judge the results returned by the retrieval system according to a given user query. The

relevant results judged by the users are used to refine the learning models. It may take

a number of feedback rounds for the retrieval system to render satisfactory retrieval
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results. Relevant feedback is often integrated with the learning methods to provide

an interactive way for the end users to further refine the retrieval performance of a

content-based retrieval system. However, the weakness of relevant feedback is that it

is sometimes inconvenient or even impossible to get the feedback from the users. In

addition, the first-round retrieval is rather important for an incremental refinement of

the retrieved results [18].

Data mining is another way to address the semantic gap issue. Data mining tech-

niques include association rule mining, classification, clustering, and etc. [19]. Lin et

al. [20] proposed an association rule mining method to generate and select association

rules for semantic concept detection. He et al. [21] fused visual features and keywords

for web image retrieval based on multi-model semantic association rules.

Clustering methods served as an unsupervised way to handle the semantic gap is-

sue. Clustering-based methods such as the one used by Chen et al. [22] assumed that

“images of the same semantics are similar in a way, images of different semantics are

different in their own ways”. This assumption matches the idea of clustering that the

intra-cluster dissimilarity should be small while the inter-cluster dissimilarity should be

large. However, it is not uncommon to encounter such a situation in the real world that

there is a large variance within the same semantics.

Apart from association rule mining and clustering, classification methods are used

as mainstream approaches to tackling semantic gap. The classification methods have

some relationships with clustering since those unsupervised classification methods ac-

tually perform the clustering job. However, one major difference between classification

and clustering lies in the aspect that classification, especially supervised classification,

requires user-provided labels to learn the models to bridge the semantic gap. Semi-

supervised classification is close to unsupervised classification since both are based on
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the same prior assumption that data points near each other probably share the same class

labels. If unlabeled data violate the assumption of semi-supervised learning, then the

accuracy of the learning models will be degraded.

Recently, graph-based semi-supervised classification methods have gained much

attention [23, 24]. In graphical models, images or video shots are treated as nodes

and the similarity values (measured by different distance metrics) between these nodes

are regarded as edges to construct a graph. Later, a graphical model is built and opti-

mized on the graph by minimizing the regularized cost function [25]. One problem with

the graphical model is measuring the distance between two nodes when constructing

graphs. Therefore, a good distance metric plays a key role in the success of graph-based

semi-supervised classification. Unfortunately, it is very difficult to justify in advance

that a distance metric is appropriate for a semi-supervised learning task.

Supervised classification algorithms build the learning models from labeled train-

ing data. Although they require more effort to get the training labels, the classification

accuracy is usually better than semi-supervised or unsupervised classification methods.

A supervised classification algorithm called RankSVM [26] was used by [18] to bridge

the semantic gap to facilitate medical image retrieval. Neural networks, Bayesian net-

works, and decision tree can also be found in [27, 28, 29] to participate in building

semantic detection or retrieval models. In this dissertation, subspace modeling methods

are proposed which also belong to supervised classification. The proposed subspace

modeling methods can achieve dimension reduction and also provide competitive clas-

sification performance. The details related to subspace modeling will be elaborated in

Chapter 3.2.
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1.3 Data Imbalance

Data imbalance is commonly seen in multimedia information retrieval. For example,

when building the models to bridge the semantic gap between low-level features and

high-level semantics, the training instances pertaining to a target semantic concept (or

called positive instances) are only a small proportion of the whole training set, while

the training instances that do not contain the target semantic concept (or called nega-

tive instances) dominate the training set, forming an imbalanced data distribution. In

this case, the target class (or called positive class, which is composed of the positive

instances) is the minority class while the majority class is the non-target class (or called

negative class). Please note that the data imbalance issue related to multiple classes is

outside the scope of this dissertation. The imbalance ratio is measured by the size of

majority class to that of the minority class and it is not uncommon to see such a ratio

with 1000 : 1 or even 10000 : 1.

He et al. [30] categorizes the data imbalance problems into two cases: imbalance

with rare instances and relative imbalance. The former refers to the case when the

number of minority class instances is limited. Such a limited number of minority class

instances makes model learning difficult because of the poor representation of the mi-

nority class. The other case, relative imbalance, is quite often seen in real-world appli-

cations. Usually, the number of the instances belonging to the minority class can reach

certain levels, but such a number is still relatively small compared to the majority class.

However, it is still possible to learn an accurate model for a minority class under the

circumstance of relative imbalance.

Most of the popular classifiers such as support vector machines (SVM), decision

tree, and neural networks are built on the assumption that the training data set is bal-

anced. However, this assumption may not be true in real cases. Thus, the learning
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models suffer from a data imbalance problem and may not be able to produce accurate

prediction results [31]. Without any strategy to handle the imbalance problem, these

classification algorithms tend to predict all data instances as the members of the major-

ity class since the learning is biased towards the majority class. For example, within a

data set where 0.1% of the data instances are the positive instances and 99.9% are the

negative instances, all instances are probably predicted to be negative since such mis-

classification of positive instances only produces a tiny prediction error (probably the

minimum prediction error). Therefore, these important positive instances will never be

correctly predicted in such a case. However, usually these positive instances are much

more important than the negative ones.

There are a number of ways to handle the data imbalance issue. Broadly, they can be

categorized into three types. The first type focuses on manipulating the data to achieve

data balance. Resampling methods are of this type. Resampling can be further divided

into oversampling and undersampling. Oversampling increases the size of the minority

class by either replicating existing instances or synthetically generating new instances

that belong to the minority class. Undersampling decreases the size of the majority class

by discarding the instances belonging to the majority class. The second type views the

trouble caused by the imbalanced data as a model quality problem, where the models

learned from the imbalanced data are considered as poor and weak. Therefore, the

second type aims to find a solution to “re-weight” and combine these weak models to

achieve an improved model. The representative methods of the second type are various

boosting and bagging methods. The last type relies on the cost function within the

learning model. It is obvious that the cost to misclassify an instance of the minority class

is higher than to misclassify an instance that belongs to the majority class. Therefore,

some classification models take into consideration such inequivalent costs during the
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model training step, preventing the minority class from being dominated by the majority

class. The representatives of the last type are cost-sensitive learning algorithms [32, 33].

To address the data imbalance problem when building subspace models, two clustering-

based subspace modeling (CLUstering-based SUbspace MOdeling (CLU-SUMO) and

Class Selection and Clustering-based SUbspace MOdeling (CSC-SUMO)) are proposed

in this dissertation to build classification models on the imbalanced data set. The pro-

posed methods generate a number of balanced data subsets to which the subspace mod-

eling methods are applied. In this way, these subspace modeling methods built on the

data subsets are used to refine the classification results given by the subspace models

learned from the original imbalanced data set. The whole procedure will be presented

in Chapter 3.3.

1.4 Semantic Concept Detection and Retrieval

A simple semantic concept detection and retrieval framework for multimedia data set

may have three major components, namely a preprocessing component, a modeling

component, and a postprocessing component. The functionality of the preprocessing

component is to prepare the data for the modeling component. There are a few research

directions involved in the preprocessing component. One research direction is to ex-

plore discriminant features that can be extracted from the content of images or videos.

Evolved from the traditional features such as color histogram, shape, and texture to

modern features like local binary patterns (LBP) [34], histograms of oriented gradients

(HOG) [35], and scale-invariant feature transform (SIFT) [12], the discriminant ability

of features keeps on increasing and pulls up the retrieval performance. However, it is

still difficult to find a set of features that are always effective for all semantic concepts.

Most of the extracted features have different scales. To prevent the small-scale

attributes from being dominated by the large-scale attributes, a common method is to
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apply data normalization. There are many normalization functions proposed to scale the

data within a common range. For example, min-max normalization function can ensure

the normalized data locate in the range of [0,1]. Equation (1.1) to Equation (1.3) show

a list of normalization functions [36], where Xmin is the minimum value of X, Xmax is

the maximum value of X, µ is the estimated mean of X, and σ is the estimated standard

deviation of X.

X ′ =
X−Xmin

Xmax−Xmin

; (1.1)

X ′ =
X−µ

σ
; (1.2)

X ′ = 0.5[tanh(
0.01 · (X−µ)

σ
)+1]. (1.3)

Attribute selection, sometimes called feature selection, is also widely adopted in

the preprocessing component to find a set of relevant attributes with regard to a tar-

get concept. The direct benefit from the attribute selection method is that the learning

model can be induced faster since the dimensionality of the attributes has been reduced.

However, a trade-off must be made between the number of attributes retained and the

performance of the learning model. Indeed, attribute selection could enhance the learn-

ing model by removing irrelevant or redundant attributes. However, the removal of too

many attributes leads the learning models to be over-fitting to the training data and thus

lacking generalization.

In addition to the aforementioned research directions, discretization also attracts

many researchers. Some learning methods (such as those based on correspondence

analysis) are designed to cope with nominal data. Therefore, sometimes it requires

discretization algorithms to convert the data from a numeric representation to nominal

values (such a conversion may facilitate the learning process [37]). Discretization could

reduce the number of possible values of attributes and simplify the representation of

the data. In general, discretization methods fall into two categories: one consists of
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unsupervised methods such as equal-width and equal-frequency discretization; the other

is formed based on a group of supervised methods such as entropy-based information

entropy maximization (IEM) and statistics-based chi-square.

The modeling component utilizes the classification algorithms to detect the target

semantic concept in the data instances and render the corresponding ranking scores.

The score value of each data instance reveals its relevance to the target concept. In the

information retrieval area, there are plenty of learning algorithms to choose, including

RankSVM [26], RankBoost [38], RankNet [39], and etc. However, most of them are

pair-wised learning methods, which encounter serious challenges from data storage and

model training time when dealing with a large-scale multimedia data set. Therefore, in

semantic concept retrieval, the most prevailing modeling algorithms are based on sup-

port vector machines that are able to balance between model accuracy and training time.

In addition, some papers also reported good results by employing logistic regression,

maximal figure-of-merit (MFoM) [40], and other learning schemes. Furthermore, to

overcome the incapability of learning ability from one kernel, multiple kernel learning

(MKL) is proposed in [41]. However, the improvement of the performance by MKL is

accompanied with an increase of learning time and computational cost. Therefore, it

remains an explorative task to find a modeling method that is able to achieve a harmonic

balance between modeling efficiency and modeling performance.

Although for some target concepts like “person” and “outdoor” the modeling com-

ponent is sufficient to render satisfactory retrieved results, many other concepts, such as

“dancing” and “adult”, still call for improvements in the retrieved results [42]. There-

fore, the third component (postprocessing) is often adopted to refine the retrieved re-

sults. A postprocessing step can provide a better ranking of the retrieval results based

on the ranking scores from the modeling component by considering additional auxiliary
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information. For example, some semantic concepts may be difficult to retrieve, result-

ing in the modeling component rendering poor retrieval performance. However, by

considering the inter-concept relationships, such as the ontology of semantic concepts,

it is possible to significantly increase the retrieval performance for these concepts. The

ontology describes the relationship among a groups of concepts and it is widely used

to facilitate video and image annotation and retrieval [43, 44]. To remove the depen-

dence on domain knowledge, automatic rule learning has been proposed in [45, 46, 47].

However, these methods are subjective to the quality of each detector and may hurt the

annotation and retrieval performance after the inter-concept relationship is considered

[46]. In this dissertation, MCA-based ranking strategies are proposed to use the inter-

concept co-occurrence to refine the retreival results from the classification models. The

proposed ranking strategies are explained in details in Chapter 3.4.

1.5 Contributions and Limitations

The contributions of the dissertation are listed as follows.

• Subspace modeling methods to bridge the semantic gap are proposed. In this

dissertation, subspace modeling algorithms are proposed to address the semantic

gap issue. The proposed methods are built on the principal component subspace

in which the idea of anomaly detection is introduced to generate rules for clas-

sification purposes. Anomaly detection focuses on detecting the abnormal data

patterns that deviate significantly from a normal pattern. Usually it is applied in

the area of intrusion detection. To the best of my knowledge, few people have

tried to use this idea to solve the multi-class classification problem and apply the

idea to the field of semantic concept detection. Unlike some existing algorithms

such as SVM that build a separation margin for different classes, the proposed

subspace modeling methods try to capture the overall data distribution of the data
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instance to perform the classification job. Furthermore, the proposed methods are

facilitated with dimension reduction as well as noisy removal functionalities. The

PC selection method helps to reduce the dimension and build robust models, ren-

dering competitive classification performance in terms of accuracy and F1 score.

Finally, the subspace modeling methods are shown to be effectively deployed into

the task of semantic concept detection to bridge the semantic gap.

• Novel subspace modeling-based classi f ication f rameworks to handle the data

imbalance problem are proposed. Compared with the resampling methods, the

proposed methods do not lose any data instances or produce extra minority in-

stances. They integrate both the global subspace models built on the original data

set with the local subspace models trained on the balanced subsets of the train-

ing data to handle the data imbalance problem. Therefore, it avoids the problems

of resampling, such as losing critical instances belonging to the majority class

and overfitting to the minority class. Compared with the boosting method, the

proposed methods do not require a time-consuming “re-weighting” time. There-

fore, they are more efficient than the boosting methods. In addition, compared

with cost-sensitive classifiers, the proposed subspace modeling methods do not

require defining any cost matrix which often requires substantial tuning efforts or

domain knowledge. However, they can achieve equivalent effects by automati-

cally assigning weights to the majority class within the subspace models.

• New ranking strategies utilizing inter-concept relationships are proposed. Two

new ranking strategies are proposed to retrieve the desired target concept effec-

tively by utilizing the inter-concept relationships. Compared with the ontology-

based methods, they require less or no domain knowledge, and the generated

rules are more specific than those from the WordNet-based methods. Further-
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more, the proposed ranking strategies utilize the inter-concept relationships be-

tween semantic concepts on the attribute-level, while the other rule-based learn-

ing methods are built on a higher level (such as the model level) which may suffer

from poor performance of the learning models.

The limitations of the proposed frameworks and methods are summarized below:

• Currently, the proposed subspace modeling methods are only shown to be effec-

tive for numeric data and they prefer those classes with Gaussian distribution.

Therefore, it cannot be directly applied to nominal data set since the mean or

standard deviation of a nominal attribute does not make sense.

• The time complexity for deriving principal components and eigenvalues from sin-

gular value decomposition is O(N2) in the training phase. Therefore, the training

phase is suggested to be done off-line.

• It requires some empirical experience to select the parameter K in CLU-SUMO

and CSC-SUMO. When deployed in a larger scale data set, the K-means cluster-

ing method requires an efficient implementation and a suitable K value.

• The selection of reference concepts in the first proposed ranking strategy requires

domain knowledge. However, such domain knowledge is no longer required for

the second ranking strategies. But the second strategies need to consider all possi-

ble combinations between the target concept and one or more reference concepts.

1.6 Organization

The remainder of this dissertation is organized as follows. Chapter 2 reviews the lit-

erature regarding the supervised classification methods, the approaches to handle data
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imbalance, and the approaches to enhance the retrieval results by inter-concept relation-

ships. Chapter 3 introduces the design of the overall framework briefly and elaborates

the details of the proposed methods to address the three challenges mentioned in this

chapter. Chapter 4 shows the design and implementation of a prototype of Web-based

semantic concept retrieval system, and Chapter 5 concludes the dissertation and pro-

poses some directions for future work.
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Literature Review

In multimedia information retrieval, supervised classification algorithms serve to bridge

the semantic gap between low-level features and high-level semantic concepts. A list

of commonly used supervised classification approaches in multimedia research are re-

viewed in Chapter 2.1. The imbalanced data distribution within the multimedia data

may negatively impact the performance of these supervised learning approaches. Thus,

diverse approaches to handling data imbalance problem are illustrated and discussed in

Chapter 2.2. Finally, Chapter 2.3 investigates the approaches that can further improve

the performance of the retrieval results by considering the inter-concept relationships.

2.1 Supervised Classification Approaches in Multimedia Informa-

tion Retrieval

Support Vector Machine (SVM) [48] is one of the most widely used classification al-

gorithms in multimedia information retrieval, which generates hyper-planes that are ca-

pable of separating the data instances of different classes in a multidimensional space.

However, the application of SVM on the original space is not satisfactory since there are

too many non-separable cases. Fortunately, according to Mercer’s theorem [49], even if

the patterns are non-separable in the original space, through a nonlinear transformation,

the patterns would be separable if the dimension after transformation is high enough.

16



www.manaraa.com

17

Based on this theorem, many studies have focused on the study of the kernels of

SVM [50, 51]. There are three standard kernels: linear, polynomial, and Gaussian.

However, these kernels are quite generic and do not closely relate to the data. For this

reason, the Fisher kernel [52] and Kullback-Leibler divergence-based kernels [53] are

developed to improve SVM and are utilized in areas such as audio and image process-

ing. For image and video retrieval, the chi-square kernel recently gained much attention

with its high performance [54]. The chi-square kernel [55] was shown to perform better

than the kernel of histogram intersection and normalized scalar products. SVM’s ad-

vantages were summarized by [56] as 1) the utilization of the kernels, 2) the absence of

local minima, 3) the sparseness of the solution, and 4) the capacity control obtained by

optimizing the margin. Despite these advantages and successful deployment in many

application areas, SVM has the following drawbacks: 1) the selection of SVM kernel

parameters is not entirely solved; 2) high algorithm complexity and extensive memory

requirement limit its usage in large scale data sets; and 3) it may have problems when

processing the discretized data, as indicated by Suykens et al. [57].

Nearest neighbor (NN) method has been studied thoroughly by the researchers for

decades. This is a lazy learning method that does not require building a model prior to

classification. Moreover, nearest neighbor method has strong adaptability to different

datasets. An extended form, K-nearest neighbor (KNN), is regarded as optimal in the

sense of Bayes error rate, assuming the sampled size approximates infinity [58]. KNN

used to perform inferiorly to SVM, but Vincent et al. [59] proposed a modified KNN

called HKNN that claimed to perform as well as or even better than SVMs. Zhang et al.

[60] proposed a hybrid framework which took advantage of the merits from both SVM

and KNN. Their idea was to apply SVM locally to those closely related neighbors and

the hybrid framework. It turned out to have a good tradeoff between time-complexity
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and classification performance. Since NN and KNN perform the classification task

during the run-time, the classification process is time-consuming, especially when the

training set is large. Besides, irrelevant or redundant attributes may compromise the

performance of NN and KNN by biasing the similarity between instances.

Decision tree algorithms are also powerful learning methods. The decision tree al-

gorithms build tree-like models to classify the data instances by their attributes. C4.5

[61] was the most well-known decision tree algorithm. It considered both the model

training speed and error rate. The improved version, called EC4.5, came out soon af-

ter it prevailed. Decision tree algorithms often suffer from the overfitting problem. To

avoid this problem, pruning strategies were usually deployed [62]. Decision tree algo-

rithms were applied to a number of fields, such as semantic concept detection and video

event classification. Chen et al. [63] combined decision tree with other multi-modal

analysis to extract goal events. During the tree generation steps, the attributes were

split by utilizing information gain. Snoek et al. [64] used C4.5 in their framework and

compared C4.5 decision tree with maximum entropy as well as SVM for automatic clas-

sification of semantic events. Decision tree algorithms work well with highly relevant

attributes, but may encounter problems when many irrelevant and interactive attributes

are present.

Rule-based classifiers are applied to areas like video indexing [65], event detection

[66], and etc. Zhou et al. [65] developed a rule-based classification system for basket-

ball video indexing. The PRISM method was utilized by [66] to generate rules. One

kind of the rule-based classification methods called associative classification became

popular recently. It contains two stages in which the first stage fulfills rule generation

and the second stage selects the most important rules. Associative classification was uti-

lized to detect semantic concepts by [67] based on the correlation between feature-value



www.manaraa.com

19

pairs and concepts. Kobylinski et al. [68] used the occurrence count and spatial prox-

imity when building a customized classifier to accurately classify the images. Repeated

incremental pruning to produce error reduction (RIPPER) [69] is another rule-based

learning algorithm, which is an optimized version of IREP (incremental reduced error

pruning) [70, 71]. RIPPER constructs a rule set that covers all positive instances in

order to fit the training data as close as possible. With regard to a large date set, while

the error rate of RIPPER is the same as or slightly better than the C4.5 decision tree,

RIPPER is more efficient than C4.5 when handling large and noisy data sets. However,

like decision tree, many rule-based methods are sensitive to irrelevant attributes [69].

Neural networks have been popular in the machine learning society. They simulate

a real biological neural network to build a mathematical model. There are many types

of neural networks, such as feed-forward neural networks, radial basis function (RBF)

networks, Kohonen self-organizing networks, recurrent networks, and others. Among

them, feed-forward neural networks and RBF networks are commonly used. Multilayer

perceptron (MP) is one kind of feed-forward neural network models, which consists of

many learning techniques. Backward propagation (BP) [72] is a learning scheme that

is most commonly used in MP. The error of the BP neural networks propagates from

the output layer back to the previous layer and updates the weights of the hidden layer

to minimize the output errors. It is shown by [73] that one hidden layer of perceptrons

were adequate as universal approximations of any nonlinear functions. As for RBF net-

works, it is a linear combination of radial basis functions. Compared with MP, it can

avoid suffering from the local minimization problem. It can also get the same approxi-

mation capability as MP. Therefore, a three-layer RBF network (only one hidden layer)

is widely employed in practice. Neural networks have the advantages of detecting the

implicit relationship between dependent or independent variables and offering accurate
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prediction performance. However, the black-box structure makes it hard to understand

the classification rules. Furthermore, neural networks require long training time and

heavy computation burdens when dealing with large-scale multimedia data sets. In ad-

dition, noisy training data and irrelevant attributes may also have a negative influence

on the classification accuracy, resulting in problems such as overfitting.

To improve the classification accuracy, boosting methods such as AdaBoost are of-

ten used in conjunction with the classification algorithms. The classic AdaBoost was

introduced by Freund and Schapire [74] to deal with binary classes. The boosting meth-

ods keep calling the base learning algorithms repeatedly in a number of rounds to find a

suitable series of weights for the training set. Also, some extended AdaBoost methods,

such as AdaBoost.M1, AdaBoost.OC [75], and AdaBoost.ECC [76], can be used to

solve the multi-class problems. AdaBoost’s major shortcoming lies in its long training

time, as it utilizes an iterative method to decide the weight of each training instance and

every iteration requires a process of classification. Thus, for learning algorithms such as

neural networks, the AdaBoost methods will further increase the time for building the

training model. Moreover, since AdaBoost is designed for improving the performance

of weak learning methods, strong learning algorithms such as SVM benefit little from

AdaBoost.

The aforementioned classification algorithms have a common problem of suffering

from irrelevant attributes when building the models. To address this problem, dimen-

sion reduction techniques such as principal component analysis (PCA) are often ap-

plied, as a PC subspace is good at not only depicting the overall characteristics of data

but also achieving the goal of dimensionality reduction. A common way to achieve

dimension reduction in a PC subspace is to discard a proportion of minority PCs [77].

Vaswani et al. [78] proposed a principal component null space classification approach
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for image and video classification, which constructs a PC subspace on a reduced set

of original PCs based on energy loss during the PCA transformation. One PC-based

classifier, called collateral representative subspace projection modeling (CRSPM), was

introduced by [79] to the multimedia applications. CRSPM consists of two modules - a

classification module and an ambiguity solver module. The idea of CRSPM, which dif-

ferentiates a normal class from the abnormal classes based on their chi-square distance,

can be further extended to detect semantic concepts by regarding a concept class as a

normal class and the other classes as abnormal ones.

One problem with these aforementioned PC-related subspace methods is that the

advantages of the construction of appropriate PC subspaces are often underestimated.

However, a good PC subspace could be vital to a satisfactory performance of subspace

classification. In this dissertation, a novel subspace-based classification framework

called multi-class subspace modeling (MSM) and its variation binary-class subspace

modeling (BSM) are proposed. MSM and BSM determine their subspaces by choosing

an optimized set of parameters to reach satisfactory classification accuracy. Fisher’s

criterion here helps to select the representative PCs on which a pair of training and test-

ing principal component classifiers (PCCs) are built. In addition to utilizing the global

dissimilarity as classification rules like MSM and BSM, a new framework called sub-

space modeling using global and local structure (SMGL) is proposed to integrate both

the global dissimilarity and the local similarity to perform classification. The detailed

descriptions of MSM, BSM, and SMGL can be found in Chapter 3.2.

2.2 Approaches to Handling Data Imbalance

There are a number of techniques to address the data imbalance issue. Data sampling is

a common technique to learn from an imbalanced data set. The idea of sampling is to

adjust the ratio between the positive instances and the negative instances that are used
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for training the classification models by reducing the number of negative (or majority)

class instances and/or by increasing the number of positive (or minority) class instances.

Therefore, data sampling can be further divided into oversampling and undersampling

[80]. Oversampling aims to add more positive class instances to the original imbal-

anced data set so that the number of the positive class instances is comparable with the

number of the negative class instances. New positive class instances can be generated

either by simply replicating existing positive class instances (called random oversam-

pling) or by synthetic sampling of the positive class instances (called synthetic minority

oversampling technique (SMOTE)) [81]. The understanding of oversampling is quite

straightforward: to balance the ratio between positive class and negative class with-

out losing any information related to the instances of both the positive and the negative

classes. However, random oversampling by replicating the positive class instances from

the original data set could lead to an overfitting problem [82]. The other oversampling

methods like SMOTE generate each synthetic positive class instance X (new) between

two existing data instances, as shown in Equation (2.1).

X (new) = (1− ε) ·X (i)+ ε · X̂ (i), (2.1)

where X (i) is an arbitrary positive class instance and X̂ (i) is randomly picked from the

K-nearest neighbors of X (i). ε is a random variable between 0 and 1. Like random

interpolation, it is reasonable to assume that there is an instance that lies between two

existing instances if they are close to each other. However, over-generalization seems to

be a big problem for SMOTE. Therefore, some adaptive synthetic sampling algorithms

[83, 84] were proposed to consider the information about neighboring data instances,

such as their class labels.

In contrast to oversampling, undersampling balances the ratio between the positive

class and the negative class by removing the instances belonging to the negative (ma-
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jority) class. The way that undersampling tries to balance the data set is quite simple

and sometimes it is effective. Cieslak et al. [85] proposed a framework that finds an

optimal sampling level for each meaningful region by identifying via a segmentation

method based on the Hellinger distance. However, some important negative instances

that represent the characteristics of the negative class could be discarded during the

undersampling process and the training model could thus be compromised.

Data sampling methods directly manipulate data instances by either increasing or re-

ducing the size of a specified class. Boosting methods handle the data imbalance issue

in another way. The boosting methods acknowledge that the training models built from

an imbalanced data set might be not good. However, an appropriate “re-weighting” of

these weak training models can lead to a good classification result. Boosting methods

combine weak learning models to reduce the negative influence caused by the data im-

balance problem. Among them, AdaBoost [86] is a representative boosting algorithm.

AdaBoost algorithm reweighs the training data instances and models iteratively dur-

ing the training phase by minimizing the prediction errors produced by an ensemble

of training models. In the classification phase, the class label of each test instance is

determined by a voting of these weighted ensemble models. AdaBoost is proved to

be effective in many real applications. However, the major drawback of AdaBoost as

well as other boosting methods is that they usually require a time-consuming iterative

process to find the optimal weights for the ensemble models.

There are also algorithms that integrate both boosting methods and sampling meth-

ods. For example, SMOTEBoost [87] was built by combining SMOTE and the Ad-

aBoost.M2 algorithm. SMOTEBoost interactively uses SMOTE at each boosting step

and the learning of the positive (minority) class is gradually strengthened and empha-

sized during iterative steps. Another example, the DataBoost-IM [88] method, aims to
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utilize a boosting procedure to ensure the predictive accuracy of the positive class and

the negative class are both satisfactory. To prevent training models from overfitting,

JOUS-Boost was proposed using the AdaBoost algorithm together with over/under-

sampling and jittering of the training data [82].

Another category of approaches to address the data imbalance problem are cost-

sensitive learning methods [33, 89, 90, 91]. In these methods, the costs associated with

the misclassification of the positive class instances and the negative class instances are

different. In the case where the positive class is dominated by the negative class, the

misclassification of the positive instances should be given a larger cost than misclas-

sifying the negative instances. Studies [32, 33] show that cost sensitive learning is

able to render better performance than the sampling methods. Algorithms like cost-

sensitive decision tree and cost-sensitive neural networks are well studied. However,

cost-sensitive learning can also be integrated with the other classifiers. One of the

problems of cost-sensitive learning is the configuration of the cost matrix. Although

it is clear that misclassifying a minority class instance should be given a larger cost, a

question arises when it comes to determining how much larger the cost value should

be. Therefore, it is a challenging task to find a suitable cost matrix for cost-sensitive

learning methods when they are used in an imbalanced data set.

In response to the challenges and difficulties of the aforementioned approaches, a

clustering-based binary-class classification framework was proposed to address the data

imbalance issue [92]. In this method, the original training data set is first divided into a

positive class subset and a negative class subset, where the positive class subset is com-

posed of all the training data instances containing the target concept and the negative

class subset consists of the remaining data instances. In the original imbalanced data

set, where the negative class dominates the positive class, the negative class subset is
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further divided into many negative groups by either clustering or holding out some other

non-target concept classes within the original negative class subset so that the ratio of

the data sizes between each negative group and the positive class subset is not large.

Therefore, the data groups generated by combining each negative group and positive

class subset do not suffer from the data imbalance issue. For each balanced group, sub-

space models are trained and optimized. Finally, the subspace models trained on all data

groups are integrated with the subspace model built on the original imbalanced data set

to form an integrated model. The integrated model is supposed to render better clas-

sification performance than the subspace model trained on the original data set alone.

As implied by the proposed framework, local subspace models are built on balanced

subsets of the original data so as to take advantages of the merit of under-sampling.

Moreover, the utilization of a global subspace model ensures that no information will

be lost. Within each subspace modeling, the weight parameter applied to the majority

class prevents the majority class from dominating the minority class, which is equiva-

lent to assigning a higher cost to misclassifying a minority class instance. Finally, an

integration of the global subspace model and local subspace model by “re-weighing”

their ranking scores avoids the time-consuming boosting step, though it may require

domain knowledge to decide some of the parameters.

2.3 Performance Enhancement by Inter-concept Relationships

Wei et al. [43] proposed an ontology-enriched semantic space and an ontology-enriched

orthogonal semantic space to facilitate the selection of concept detectors for video

searching. These ontology-based methods usually build a knowledge base on Word-

Net, in which the nodes denote the semantic concepts and the relationships between

concepts are represented as the edges. Wang et al. [93] summarized the limitations

of WordNet as: 1) the knowledge between semantic concepts is too generic and lack
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of the flexibility to describe the actual relationships within a specific multimedia data

collection; and 2)it is unable to handle lexicons out of WordNet.

Furthermore, other methods utilizing the inter-concept relationships to enhance per-

formance of the semantic concept retrieval have also been proposed. Liu et al. [45]

proposed an association and temporal rule mining method to infer the presence of the

semantic concepts from inter-concept co-occurrence, reporting enhanced semantic con-

cept detection accuracy. There are also graphical models [46, 47] built to capture the

inter-concept relationships or utilize the consistency of semantic concepts to improve

the annotation results. Qi et al. [94] utilized a correlative multi-label (CML) frame-

work to model the correlations between concepts with strong interactivity. For some

concepts, their work reported more than 10% improvement in terms of average preci-

sion (AP). Aytar et al. [95] presented a video retrieval framework using semantic word

similarity and visual co-occurrence. The context between concepts was exploited by

point-wise mutual information. The visual co-occurrence relations between concepts

were also obtained. Evaluating the concepts from TRECVID 2006 and 2007 data sets,

the semantic retrieval results performed 81% better than those of the text-based retrieval

methods. Yan et al. [46] proposed a probabilistic graphic model to mine the relationship

between video concepts. In their work, a set of concepts were grouped together to learn

a multi-concept relation model via a probabilistic graphic model. Their paper reported

that some concepts had benefited from the multi-concept relation model; while others

could render worse performance than that of the baseline method. Their pioneer work

actually implied that although such a multi-concept relation model showed encourag-

ing results, there still existed “gold” undermining the relationship between concepts

that required a deeper discovery. Jiang et al. [47] proposed an impressive approach

called the domain adaptive semantic diffusion method (DASD) that utilized the consis-
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tency between semantic concepts to improve the annotation results. DASD treated the

concepts as nodes and the concept affinities as the weights of the edges and thus built a

semantic graph model to capture the relationships between concepts. Their experiments

on TRECVID 2007 data sets [42] reported a 6.3% performance gain over the baseline

method by using DASD. It revealed that such an inter-concept relationship is potentially

significant for an effective concept retrieval framework.

The difference between the proposed framework and the previous work lies in the

following aspects. First, some previous work regards correlation information as mu-

tually useful. In other words, it considers concept “A” and concept “B” as both target

and reference concepts to each other under the assumption that concept “A” and con-

cept “B” would both benefit from their correlation. However, this may not be true in

reality since the difficulty to retrieve concepts “A” and “B” may not be the same. For

example, although the concepts “road” and “outdoor” have a strong correlation, “road”

is much more difficult to retrieve than “outdoor” [4]. Therefore, “road” may benefit

from such a correlation from “outdoor” because the correlation information from “out-

door” is quite reliable. Unfortunately, on the other side, “outdoor” may render worse

performance if it utilizes the correlation information with “road”. Therefore, in the pro-

posed work, the correlation information is utilized uni-directionally. In addition, only

those easy-to-retrieve concepts are regarded as the reference concepts and of which

the relationship will be used to refine the ranking of the retrieved results of the target

concepts. Second, the information of co-occurrence between concepts is viewed in a

mutual manner in the previous work. That is, only when concept “A” and concept “B”

both appear frequently does the relationship between “A” and “B” become valuable.

However, this co-occurrence between concepts is viewed here in an individual manner.

As long as there is a large chance (e.g., 90%) that “B” will occur when “A” appears,
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this co-occurrence relationship from “B” is valuable and should be taken into consid-

eration, no matter how low the chance of “A” would appear when “B” occurs. It is

worth mentioning that previous work may miss co-occurrence relationship that is not

mutual, such as the co-occurrence relationship between “snow” and “outdoor”. Finally,

previous work studied the correlation between concepts on the concept level, and the

inter-concept relationships were derived from the class labels. However, the proposed

frameworks further explore such inter-concept relationships on the attribute level (de-

tails to be explained in Chapter 3.4).
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Chapter 3

The Proposed Semantic Concept Detection and

Retrieval Framework

The overall design of the proposed semantic concept detection and retrieval frame-

work is illustrated in Chapter 3.1. It aims to tackle the three challenges mentioned in

Chapter 1 and responds to the challenges as follows. The semantic gap issue is regarded

as a classification problem. In this chapter, a multi-class subspace modeling method

[96] is proposed in Chapter 3.2.1 and its variation (a binary-class subspace modeling

method) is proposed in Chapter 3.2.2 to address binary-class multimedia data sets. The

subspace modeling method that integrates both global dissimilarity and local similar-

ity is proposed in Chapter 3.2.3. Considering the data imbalance issue as well as the

characteristics of the subspace modeling method, a clustering-based subspace model-

ing (CLU-SUMO) method is proposed in Chapter 3.3.1 which is able to build robust

models from imbalanced data sets. Later, class selection and clustering-based subspace

modeling (CSC-SUMO) method is proposed in Chapter 3.3.2 to integrate class selec-

tion with CLU-SUMO and reduce the cost of clustering as well as the time for training

models. To address the last challenge, inter-concept relationships are taken into con-

sideration to refine the semantic retrieval results from subspace models and semantic

concept retrieval frameworks that utilize co-occurrence relationships between semantic

concepts are proposed in Chapter 3.4.

29
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3.1 Overview of Proposed Semantic Concept Detection and Retrieval

Framework

The overview of the proposed semantic concept retrieval framework is shown in

Figure 3.1. The framework consists of a preprocessing component and one semantic

concept detection and retrieval component.

Figure 3.1: The overview of the proposed semantic concept detection and retrieval

framework

The preprocessing component performs the role of extracting low-level features

from the video contents. Shot boundary detection methods may be applied to segment

each video into a sequence of shots, which are the basic units within a video. Two kinds

of features could be extracted from videos: key frame-based features and shot-based

features. Before extracting key frame-based features, key frame detection methods [97]

can be employed to generate a collection of key frames to summarize the video contents.

In the set of key frame-based features, the following features could be extracted: color
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dominant in RGB color space, color histogram in HSV space, color moment in YCbCr

space, edge histogram, texture co-occurrence, texture wavelet, Tamura texture, Gabor

texture, and local binary patterns. In addition, some mid-level features from face detec-

tion can also be captured, such as the number of faces. In the set of shot-based features,

audio features and shot-based visual features are extracted. The extracted audio feature

set is composed of volume-related, energy-related, and spectrum-flux-related features

as well as the average zero crossing rates. As for shot-based visual features, the grass

ratio is calculated as a mid-level feature, which is useful for detecting sports-related

semantics such as soccer players and sports. Furthermore, a set of motion intensity es-

timation features are extracted, such as the center-to-corner pixel change ratio. Both of

the categories of features target at representing/summarizing the videos.

Video representation is a difficult but helpful task in multimedia research. However,

it is not the focus of this dissertation. The key frame-based features are commonly

used to describe the video content and show that integrating both global and local key

frame-based features is effective in the multimedia retrieval task.

However, key frame-based features cannot capture audio information and some

shot-level information may be missing. Therefore, it needs shot-based features to serve

as an auxiliary information source. Z-score normalization (shown in Equation (1.2))

is applied to the extracted key frame-based and/or shot-based features to prevent large

attributes dominating the small attributes. Then, chi-square feature selection is adopted

to select a list of relevant features for the query concepts. However, the other feature

selection algorithms are also welcomed and could be easily employed in the framework

to replace the chi-square feature selection method.

The input of the semantic concept detection is a binary-class data set with positive

class instances containing the target concept and negative class instances without the
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target concept. The semantic detection and retrieval component makes use of MSM,

BSM, or SMGL to build subspace models to detect the query (target) concept issued

by a user. The MSM, BSM, or SMGL constructs a principal component subspace for

the positive class and the negative class separately. Then, classification rules are gen-

erated based on the data distributions of positive instances and negative instances on

their principal component subspaces. These classification rules are used later to predict

whether or not a testing instance (representing a testing image or video shot) has the

target concept. See Chapter 3.2. for the details about MSM, BSM, and SMGL.

For some concepts, the positive class and negative class have extremely imbalanced

data distribution which compromises the subspace models. Clustering-based subspace

modeling will be utilized to handle the data imbalance issue. One clustering-based

subspace modeling method called CLU-SUMO addresses the data imbalance problem

by clustering the negative class into several subsets, each of which merges with the

positive class to form a much more balanced subset of the original data set. The idea

of applying the clustering algorithm is to generate a number of groups where the data

instances within the same group usually have a higher similarity, while the differences

among the data instances between different groups should be larger. Since the clustering

is quite time-consuming, when there are some peer semantic concepts existing with the

target concept, another clustering-based subspace method called CSC-SUMO can be

utilized to generate some subsets from original data set based on the class labels. In this

way, the number of data instances participating in the clustering part is reduced and the

efficiency of training clustering-based subspace modeling methods is improved. Details

about CLU-SUMO and CSC-SUMO can be found in Chapter 3.3.

Subspace modeling does not consider inter-concept relationships. Therefore, the

ranking subcomponent takes consideration of the inter-concept co-occurrence to rank
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the retrieved instances that are predicted to be relevant to the query concept. Within

the ranking subcomponent, the co-occurrence classes are formed and used to refine

the retrieval results from the classification models. The ranking strategies used in the

ranking subcomponent are elaborated in Chapter 3.4.

The flowchart of the proposed framework is briefly described as follows. In training

phase (shown by the dash arrow), training features are extracted from the training videos

or images with labels. These training features are also normalized and appropriately

selected so they are useful to detect the query (target) concept. Then, subspace modeling

is used to build models to map the target concept to these training features. Furthermore,

the inter-concept co-occurrence relationship with regard to each attribute of the training

features is captured in the ranking step.

The testing phase (shown in the solid arrow) starts after the training phase is fin-

ished. The preprocessing component extracts and selects the same features (the name

and the number of the features are the same) as those in the training phase. Also, the

testing phase applies z-score normalization using the normalization parameters from

the training data. In this way, testing features are generated and further input to the

subspace models, where the semantic concept detection is performed. The subspace

models provide preliminary ranking for the testing videos and images. Later, the inter-

concept co-occurrence relationship based on each attribute renders the final ranking

position of these testing videos or images in a list that will be returned to the end user

who has issued the query concept.

3.2 Proposed Subspace Modeling Algorithms

Principal component subspace is able to depict the overall data structure from the per-

spective of variance. In addition, it is easy to achieve dimension reduction [98] by dis-

carding trivial or minority PCs (those PCs whose corresponding eigenvalues are zero or
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very small). It is possible to use a particular PC subspace to characterize each class and

generate a set of rules to achieve multi-class classification. Therefore, it promotes the

idea to propose subspace modeling methods in which multi-class subspace modeling

is capable of handling multi-class classification problem while binary-class subspace

modeling is a special case of multi-class subspace modeling that is designed specifically

to cope with binary-class data sets, such as the multimedia data sets in the representa-

tion of “one-against-all”. In “one-against-all” representation, the instances containing

the target concept are called positive instances and the rest of the instances are regarded

as negative instances. This is a very commonly seen data preprocessing strategy when

encountering a multimedia data set in which one instance may have multiple labels.

Under such circumstances, binary-class subspace modeling can be applied to bridge the

semantic gap and detect the semantic concepts within the data set.

3.2.1 Multi-class Subspace Modeling

Figure 3.2: The proposed multi-class subspace modeling (MSM) framework



www.manaraa.com

35

Figure 3.2 depicts the proposed multi-class subspace modeling (MSM) framework.

It mainly consists of three parts, namely principal component classifiers training array,

principal component classifiers testing array, and label coordinator. Principal com-

ponent classifiers training array is an array of training principle component classifiers

(PCC), each of which is called PCC train; whereas principal component classifiers

testing array includes the same number of testing PCCs, which are called PCC test.

Please note that each class i has the corresponding PCC traini and PCC testi pair that

are used to recognize its data instances. Figure 3.3 and Figure 3.4 show the architectures

of PCC traini and PCC testi, respectively.

As shown in Figure 3.2, MSM consists of training and testing phases. In the train-

ing phase, the training data go through the set of PCC traink, k=1 to N, where each

PCC traink is in charge of recognizing the instances belonging to class k (as shown in

the dashed lines). The training data are divided into normal and abnormal parts in each

PCC traink; the data instances belonging to class k are considered as normal, while the

data instances that do not belong to class k are said to be abnormal. The details are

presented in the Chapter Principal Component Classifiers. Then, by evaluating and

tuning the parameters involved in PCC traink, each PCC traink should be well-tuned

for the training model of the class k. Here, an iterative process is adopted to tune the

parameters since it is hard to find close-form solutions for these parameters.

During the testing phase, the parameters generated from PCC traink will be passed

to the corresponding PCC testk for testing (e.g., the dissimilarity threshold for PCC traink

is used in PCC testk). The testing data are input to all PCC testk, where k=1 to N, as

indicated by the solid lines in Figure 3.2. Finally, it is not surprising to find that a testing

data instance is not recognized by any PCC testk (called “unknown”), or is recognized

by more than one PCC testk (called “ambiguous”) after collecting the resulting labels
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Figure 3.3: Training principal component classifier for class i (PCC traini)

from all PCC testk (k=1 to N). This problem is addressed by a module called labor

coordinator, as shown in Figure 3.5, where all testing instances will be assigned one

and only one label.

Principle Component Classifiers

There are two types of principle component classifiers, namely PCC train and PCC test,

which are the basic units of the PCC training array and PCC testing array. In MSM, a

pair of PCC traink and PCC testk is built for class k. A PCC captures the main charac-

teristics of a class in the PC subspace and later utilizes certain rules to classify the data

instances in this PC subspace. Unlike typical cases in which the PC subspace is com-

monly seen in unsupervised learning with the objective to achieve dimension reduction,

the PC subspace utilized in MSM is designed for only one class for the purpose of out-

lining and summarizing the characteristics of that class. That is, one PC subspace is

constructed for one class in MSM. The benefit is at least two-fold. On one hand, each



www.manaraa.com

37

Figure 3.4: Testing principal component classifier for class i (PCC testi)

Figure 3.5: Label coordinator
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PC subspace captures the characteristics of one class more easily than those of mul-

tiple classes. On the other hand, it enables more flexibility and accuracy for building

the classification model since different classes may be characterized by different PC

subspaces.

Figure 3.3 shows the architecture of the training principle component classifier for

class i (PCC traini). In PCC traini, the train data are first divided into two parts ac-

cording to their labels. The data instances of class i (called normal data instances)

go through normalization and data filtering processes. The data instances of the other

classes (called abnormal data instances) are normalized using the parameters deter-

mined by the normalization process for the normal data instances. Both normal and

abnormal data instances select the PCs to construct the PC subspace. A PC subspace

projection step here will transfer the normal and abnormal data instances from the orig-

inal space to the PC subspace, where dissimilarity to the center of class i will be calcu-

lated. The dissimilarity value of the normal data instances will later be used to generate

the dissimilarity threshold for class i. Finally, all training data instances compare their

dissimilarity values with the dissimilarity threshold. If the dissimilarity value of a data

instance is less than the dissimilarity threshold, then it is assigned the label of class

i. Then, an accuracy evaluation step is taken to carry out the iterations of parameter-

tuning.

Figure 3.4 shows the architecture of testing principle component classifier for Class

i (PCC testi). In fact, the steps are very similar to those of the abnormal data instances

in PCC traini as shown in Figure 3.3, and so are the descriptions of those steps. As

can be easily seen, when the dissimilarity value of a testing data instance is less than

the dissimilarity threshold, label i will be assigned to it. No matter whether a label is

assigned, the testing data instance goes to “label coordinator”.
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The following two key issues arise when MSM is to be built: 1) How to construct

a PC subspace where normal data instances can be separated from abnormal data in-

stances as many as possible? 2) What criterion (or what rule) can be used to separate

normal and abnormal data instances?

Principle Component Subspace Construction

Constructing a PC subspace is the first key issue to be addressed. In MSM, normal-

ization, filtering, and PC selection play important roles in building this PC subspace.

Normalization helps to prevent normal data instances from being dominated by a few

large-scale features. Currently, there are a few types of normalization, as shown in

Equation (3.1), Equation (3.2), and Equation (3.3). Equation (3.2) and Equation (3.3)

ensure the data will be within a certain range after normalization. For example, after

applying Equation (3.2), normalized data lie in the range of [-1,1]. Likewise, Equation

(3.3) will ensure the normalized data lie at [0,1].

X =
T−µ

σ
; (3.1)

Xm =
T

max|T|
; (3.2)

Xmm =
T−min(T)

max(T)−min(T)
, (3.3)

where µ and σ stand for the mean and standard deviation of T , and min(T ) and max(T )

are the minimum and maximum value of T .

In MSM, Equation (3.1) is adopted to normalize the data since it has the effect of

centralizing the normalized data. According to the central limit theorem, X approxi-

mates to the Gaussian distribution as long as the number of instances is large enough.

Meanwhile, compared with the data after two other types of normalization, the cen-

tralized data here are easier for further analysis in a PC subspace. Data filtering may

also contribute to construct a good PC subspace. The main concern of employing data

filtering here lies in two aspects: 1) the real world data may not be “clean” and PC will
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be influenced significantly by those “noisy” data; and 2) part of the “clean” data may

construct a better model than all of the “clean” data. For these concerns, a factor γ is

then introduced in the data filtering step to determine the confidence interval of the re-

tained “clean” data. This is done by first calculating each data instance’s Mahalanobis

distance Mi, which is defined as follows.

Mi =
√
(X i− X̄ )S−1(X i− X̄ )′,

where

• {X i, i=1,2, . . ., N} is the instance after normalization;

• X̄ = 1
N

N

∑
i=1

X i;

• S = 1
N−1

N

∑
i=1

(X i− X̄ )′(X i− X̄ ).

Here, the Parzen window [99] is adopted to estimate the distribution of the Maha-

lanobis distance. The Parzen window is utilized extensively in diverse areas, such as

classification [100], clustering [101], image segmentation [102], and etc. The Parzen

window estimates the probability density function from the given samples by means of

data interpolation. The Parzen window estimate is defined as follows:

P(M) = 1
n

N

∑
i=1

1
hd

n
K(M,M i

n
) ,

where K(•) is the window function or kernel in a d-dimensional space, hn > 0 is the

window width related to the kernel, and n is the number of samples.

Generally speaking, a large Mi indicates that data instance i deviates from the ma-

jority of the normal data instances. Therefore, applying a confidence interval γ on the

distribution of Mahalanobis distance may help to retain better training data instances for

building the model while wiping out some “noisy” or “trivial” data instances that may
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compromise the training model. Hence, according to the γ value, the threshold of the

Mahalanobis distance Mth corresponding to the confidence interval of (1− γ)×100%

will be computed. It is easy to see that γ should be between 0 and 1. The retained data

instance k will satisfy the condition that Mk < Mth. It should be pointed out that the

filtering step utilized here focuses on those normal data instances for each PCC. Some

filtered normal data instances in one PCC train will definitely show up in some other

PCC train, serving as abnormal data. Thus, the filtering step will not reduce the number

of training data instances participating in training the model; instead all training data

instances will be utilized in the PCC training array.

The aforementioned steps are used for the next important step: PC selection. The

PCs selected are used for constructing a PC subspace where the original data will be

projected for further analysis. A good PC subspace will help to separate normal data

instance from abnormal ones. Therefore, the selection method focuses on the separation

ability of each PC, where the Fisher criterion is utilized to select those “good” PCs.

Suppose that the original data X is projected to Y on the PC subspace using Equation

(3.4), where each PC is derived from singular value decomposition (SVD). There is an

important property [103] for Y that the variance of each column of Y is the same as

the eigenvalue corresponding to that column, which means var[Yj] = λ j , j = 1,2, . . ..

Here, the PCs with zero eigenvalue are considered trivial ones that do not have any

separation ability and thus they will simply be discarded. Therefore, var[Yj]> 0 for all

PCs. Due to the centralization effect of normalization, now each column of normal data

instances holds the mean value of zero. To simplify the analysis further, each column

of the projected data will be divided by the square root of λ j so that the normal data

instances will have a standard deviation value equal to 1.
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Y = X ·PC, (3.4)

where X is the training data after the normalization and data filtering steps. and PC =

(PC1,PC2, . . .) is a group of PCs.

The Fisher criterion defines the separation ability as the ratio of the variance be-

tween the classes to the variance within the classes, as shown in Equation (3.5).

S=
σb

σw
, (3.5)

where σb stands for the variance between the classes and σw stands for the variance

within the class.

So, it is easy to see that σw =1 for each PC. To measure the variance between classes,

Hellinger distance [104] is introduced here to measure the distance between the normal

and the abnormal instances. For the normal instances projected on PCk, they satisfy

normal distribution with a zero mean and one variance. For the abnormal data, it is

assumed that their projection on each PC approximates Gaussian distribution for sim-

plicity. This assumption usually holds as long as the number of abnormal instances is

large enough. Thus, σb equals to the square of Hellinger distance, which is displayed

in the form of measuring two normal distributions in Equation (3.6).

H(N,A)= (1−

√
2σ1σ2

σ 2
1 +σ 2

2

e
−

1
4
(µ1−µ2)

2

σ2
1 σ2

2 )1/2, (3.6)

where

• µ1 and σ1 are the mean and standard deviation values of N, which stands for the

projected normal data on one PC.

• µ2 and σ2 are the mean and standard deviation values of A, which stands for the

projected abnormal data on the same PC.
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Based on the Fisher criterion, the separation ability S j of the jth PC can be written

as Equation (3.7).

S j = H2
j , (3.7)

where H j stands for Hellinger distance calculated from the jth PC.

According to Equation (3.7), all PCs can be ranked according to their separation

ability. The larger S that a PC holds, the easier it is to separate normal data instances

from abnormal instances on that PC. The value of S is located within 0 to 1, since

H ∈ [0,1]. It is then possible to rank the PCs by their separation ability and to search

the best PC combination in a linear way or just simply set a threshold for S. In practice,

a threshold PCth is often required to remove those PCs that are of little help to separate

normal data instances. Without this ranking to facilitate searching for the best combi-

nation of PCs, it may require an exhaustive search. Even a greedy forward or backward

searching algorithm will take the time complexity of O(N2) to finish the search task,

while the time complexity of the search in MSM is O(N). Finally, the best combination

of PCs will span the PC subspace for generating the classification rule.

Classification Rule Generation

As pointed out before, each column of normal data instances Y satisfies the follow-

ing two conditions shown in Equation (3.8) and Equation (3.9).

mean(Y j) = 0 , j = 1,2... (3.8)

var(Y j) = λ j , j = 1,2... (3.9)

Because of these two useful conditions, a dissimilarity measure called DSM is proposed

to calculate the dissimilarity of each instance towards a specified class. For data instance

i, its DSM is defined as follows.
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DSMi = ∑
j

Y 2
i j

λ j

, j = 1,2... (3.10)

where Yi j is data instances i’s projection on PC j.

For normal data instances, their DSM dissimilarity values are small since Yi j is dis-

tributed around 0. However, for the abnormal data instances, their DSM dissimilarity

values may be very large as long as there is one PCk that holds a large
Y 2

ik

λk
value. There-

fore, a classification rule related to this dissimilarity value is defined as follows.

CLASSIFICATION RULE

1 With regard to data instance i,

2 if DSMi ≤ DSMthresh then

3 assign the label of the current class to data instance i.

To get this DSMthresh, a factor called α is utilized as the confidence level. Similar to

the data filtering step, a Parzen window is applied to the DSM values of all normal data

instances. DSMthresh is the value corresponding to the confidence interval of (1−α)×

100% of the upper tail of DSM distribution. Here, the upper tail means the distribution

tail that expands to positive infinity.

To optimize each PCC train, two loops will be applied to search for the optimal

parameters, one for γ and the other for α . Both γ and α values are within [0,1], and

domain knowledge may further narrow this iteration range. The time complexity for

such optimization is at most O(N3), if one loop is required for searching the PCs.

Label Coordinator

There are two possible issues after assigning labels to a data instance in the PCC testing

array. This is when the label coordinator is applied to resolve such issues.

1. A testing data instance may not be recognized by any PCC, which is called “un-

known”;
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2. A testing data instance may be recognized as normal by more than one PCC and

is assigned multiple labels, which is called “ambiguous”.

Finding the criteria indicating how likely one data instance is towards different

classes is not easy since different classes may have diverse PC subspaces and DSMthresh

values. For this purpose, the Attach Proportion measure in [105] is adopted. The

Attaching Proportion AT P
(k)
i of data instance i towards class label k is defined by

Equation (3.11).

AT P
(k)
i =

DSMi
(k)

DSMthresh
(k)

. (3.11)

The architecture of the label coordinator is shown in Figure 3.5. When a testing data

instance arrives at the label coordinator, the label coordinator will first check if it is an

“unknown” data instance (i.e., no class label). Although none of the classes claims to

recognize the “unknown” data instance as its member, each of them does judge the dis-

similarity of the “unknown” data instance towards itself. This dissimilarity information

can be taken into consideration to solve this “unknown” issue. The solution is to as-

sign each “unknown” data instance with the label of the class with the lowest Attaching

Proportion value, meaning that a smaller Attaching Proportion value implies a closer

relationship between the instance and that class. On the other hand, a testing data in-

stance may be “ambiguous” and thus the label coordinator is applied to determine only

the one class label that has the lowest Attaching Proportion value to it. In case there

is a tie in the smallest Attaching Proportion values, the testing data instance will be

classified to the class possessing the lowest DSMthresh value. If there remains a tie in

the DSMthresh values, then the class label of the data instance can be randomly selected.

In such a manner, a testing instance is ensured to have exactly one class label.
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Experiment Design

The data sets used for evaluating the performance are obtained from a few sources: UCI

Machine Learning Repository [106], KDD CUP 1999 [107], the Local Area Network

(LAN) Testbed [108], and TRECVID [42].

Table 3.1: Information about all data sets
date set ID data set name source # of classes # of attributes

Group 1 Iris UCI 3 4

Group 2 Wine UCI 3 13

Group 3 Statlog UCI 4 18

Group 4 KDD KDD 4 44

Group 5 SPECTF Heart UCI 2 22

Group 6 Multiple Features UCI 9 76

Group 7 Haberman’s Survival UCI 2 3

Group 8 Blood Transfusion UCI 2 4

Group 9 Testbed LAN 9 43

Group 10 Emergency vehicle TRECVID 2 48

Group 11 Dog TRECVID 2 48

Group 12 Mountain TRECVID 2 48

Experiment Result

Table 3.2, Table 3.3, and Table 3.4 display the classification accuracy of MSM, C4.5

decision tree (C4.5), logistic regression (Logistic), support vector machines (SVM),

AdaBoost-SVM, AdaBoost-C4.5, nearest neighbor (NN), K-nearest neighbor (KNN),

Random Forest, decision table, one rule, naive Bayes, multilayer perceptron, repeated

incremental pruning to produce error reduction (RIPPER), and a partial decision tree-

based classification algorithm called PART for each group of data sets.

From Group 5 and Group 8, it can be clearly seen that MSM outperforms the other

classification approaches even if the classes are imbalanced. For Group 5 and Group 8,

their negative to positive ratios are 267:55 and 570:178, respectively. The superiority

of MSM over the other classification methods is presented distinctly in Group 5. The
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Table 3.2: Average multi-class supervised classification accuracy (with standard de-

viation) among MSM, SVM, Logistic, Naive Bayes, NN, KNN, AdaBoost-SVM,

AdaBoost-C4.5, Decision Table, RIPPER, One Rule, PART, C4.5, Random Forest, and

Multilayer Perceptron. Classification accuracy is shown below. (Groups 1-3)

Mean Accuracy % Group 1 Group 2 Group 3

MSM 97.32%(±0.56) 98.59%(±0.84) 82.73%(±0.68)
SVM 95.94%(±0.49) 97.14%(±0.77) 72.80%(±0.68)

Logistic 95.06%(±1.53) 96.63%(±1.09) 78.61%(±0.87)
Naive Bayes 95.07%(±1.29) 96.91%(±0.47) 44.92%(±1.20)

NN 95.34%(±0.84) 95.28%(±0.80) 68.54%(±0.91)
KNN 95.94%(±0.67) 96.01%(±0.62) 68.97%(±0.87)

AdaBoost-SVM 95.67%(±0.72) 96.80%(±1.39) 72.85%(±0.71)
AdaBoost-C4.5 93.86%(±1.50) 95.39%(±1.70) 74.79%(±1.21)
Decision Table 93.93%(±1.32) 86.94%(±3.86) 63.31%(±1.41)

RIPPER 92.59%(±1.62) 89.62%(±1.61) 69.79%(±1.69)
One Rule 94.11%(±0.98) 77.81%(±1.98) 51.54%(±0.91)

PART 93.93%(±1.51) 92.03%(±1.71) 71.14%(±0.78)
C4.5 94.00%(±1.45) 92.48%(±1.82) 70.98%(±0.80)

Random Forest 94.39%(±1.34) 95.95%(±1.17) 73.97%(±1.12)
Multilayer Perceptron 95.66%(±1.13) 96.79%(±0.61) 80.08%(±1.33)

Table 3.3: Average multi-class supervised classification accuracy (with standard de-

viation) among MSM, SVM, Logistic, Naive Bayes, NN, KNN, AdaBoost-SVM,

AdaBoost-C4.5, Decision Table, RIPPER, One Rule, PART, C4.5, Random Forest, and

Multilayer Perceptron. Classification accuracy is shown below. (Groups 4-6)

Mean Accuracy % Group 4 Group 5 Group 6

MSM 94.40%(±0.11) 84.04%(±0.32) 82.22%(±0.22)
SVM 94.39%(±0.14) 80.79%(±1.21) 81.86%(±0.42)

Logistic 93.31%(±0.24) 80.52%(±1.04) 78.42%(±0.38)
Naive Bayes 94.17%(±0.15) 76.48%(±1.23) 73.08%(±0.33)

NN 90.13%(±0.35) 76.85%(±1.40) 79.71%(±0.51)
KNN 94.00%(±0.17) 81.69%(±1.01) 81.82%(±0.29)

AdaBoost-SVM 94.03%(±0.29) 80.67%(±0.99) 81.49%(±0.44)
AdaBoost-C4.5 91.11%(±0.37) 80.64%(±1.54) 76.35%(±0.48)
Decision Table 94.36%(±0.30) 79.14%(±0.50) 52.51%(±2.31)

RIPPER 94.29%(±0.36) 80.19%(±2.34) 67.68%(±1.18)
One Rule 93.58%(±0.27) 79.40%(±0.00) 26.76%(±0.87)

PART 93.23%(±0.39) 79.89%(±1.31) 71.00%(±1.18)
C4.5 93.58%(±0.33) 78.65%(±1.61) 69.45%(±0.88)

Random Forest 91.13%(±0.26) 80.97%(±1.04) 76.82%(±0.37)
Multilayer Perceptron 93.76%(±0.31) 78.76%(±0.95) 80.82%(±0.47)
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Table 3.4: Average multi-class supervised classification accuracy (with standard de-

viation) among MSM, SVM, Logistic, Naive Bayes, NN, KNN, AdaBoost-SVM,

AdaBoost-C4.5, Decision Table, RIPPER, One Rule, PART, C4.5, Random Forest, and

Multilayer Perceptron. Classification accuracy is shown below. (Groups 7-9)

Mean Accuracy % Group 7 Group 8 Group 9

MSM 75.13%(±0.76) 78.61%(±0.47) 98.77%(±0.10)
SVM 73.14%(±0.40) 76.16%(±0.09) 91.31%(±0.76)

Logistic 74.08%(±0.41) 77.29%(±0.40) 98.53%(±0.24)
Naive Bayes 74.67%(±0.58) 75.07%(±0.27) 98.58%(±0.09)

NN 66.99%(±2.17) 60.19%(±0.95) 98.72%(±0.17)
KNN 71.86%(±1.16) 76.58%(±0.86) 98.44%(±0.25)

AdaBoost-SVM 74.48%(±1.21) 76.79%(±0.57) 98.66%(±0.13)
AdaBoost-C4.5 72.16%(±1.30) 77.07%(±1.18) 98.42%(±0.20)
Decision Table 72.48%(±1.20) 75.53%(±0.97) 98.22%(±0.35)

RIPPER 71.80%(±1.03) 77.66%(±1.49) 97.42%(±0.52)
One Rule 71.93%(±1.87) 76.02%(±0.45) 56.51%(±1.05)

PART 71.93%(±1.22) 77.00%(±1.28) 98.64%(±0.17)
C4.5 71.80%(±0.95) 77.00%(±1.14) 98.62%(±0.17)

Random Forest 67.65%(±2.27) 73.09%(±0.90) 98.49%(±0.11)
Multilayer Perceptron 73.14%(±1.52) 77.61%(±0.75) 98.72%(±0.12)

Table 3.5: Average multi-class supervised classification accuracy (with standard de-

viation) among MSM, SVM, Logistic, Naive Bayes, NN, KNN, AdaBoost-SVM,

AdaBoost-C4.5, Decision Table, RIPPER, One Rule, PART, C4.5, Random Forest, and

Multilayer Perceptron. Classification accuracy is shown below. (Groups 10-12)

Mean Accuracy % Group 10 Group 11 Group 12

MSM 75.23%(±0.11) 77.02%(±0.15) 75.14%(±0.02)
SVM 75.00%(±0.00) 76.61%(±0.12) 75.00%(±0.00)

Logistic 72.98%(±0.49) 75.99%(±0.26) 74.31%(±0.26)
Naive Bayes 68.24%(±0.24) 68.25%(±0.44) 61.79%(±0.34)

NN 67.41%(±1.48) 70.84%(±0.56) 66.82%(±0.29)
KNN 73.64%(±0.87) 76.22%(±0.55) 73.21%(±0.29)

AdaBoost-SVM 71.05%(±1.21) 76.34%(±0.42) 75.00%(±0.01)
AdaBoost-C4.5 72.34%(±0.79) 73.27%(±0.67) 71.62%(±0.32)
Decision Table 74.50%(±0.32) 75.94%(±0.46) 74.67%(±0.16)

RIPPER 72.26%(±1.02) 75.28%(±0.56) 74.38%(±0.05)
One Rule 70.12%(±0.90) 72.31%(±0.75) 74.32%(±0.36)

PART 72.55%(±1.56) 75.14%(±0.89) 73.77%(±0.66)
C4.5 70.93%(±1.85) 72.89%(±0.75) 71.81%(±0.74)

Random Forest 74.70%(±0.21) 76.63%(±0.58) 74.93%(±0.10)
Multilayer Perceptron 67.70%(±0.59) 69.94%(±1.25) 66.52%(±1.27)
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Table 3.6: Significance test for Group 1 to Group 12

Date set one-tail p-value

Group 1 0.000

Group 2 0.001

Group 3 0.000

Group 4 0.406

Group 5 0.000

Group 6 0.019

Group 7 0.087

Group 8 0.000

Group 9 0.193

Group 10 0.004

Group 11 0.000

Group 12 0.019

accuracy of MSM is 84.04%, while the accuracy values of the compared methods are

around 80%. For example, the accuracy values of SVM and Random Forest are almost

3% worse than that of MSM.

One thing worth mentioning is that the promising performance of MSM is not con-

fined to only small data sets such as Group 1 and Group 3. Experimental results show

that it also works well in medium-sized data sets such as Group 6, which is composed

of 1800 data instances and 76 attributes.

The result of the significance test is shown in Table 3.6. As is shown in this table,

MSM can outperform all the other classification algorithms significantly for six groups

with p-value less than or equal to 0.1% based on a one-tail student’s t-test.

3.2.2 Binary-class Subspace Modeling

In the semantic concept detection task, a common strategy is to build an individual

model for each semantic concept. In this strategy, all training instances related to the

target concept are regarded as positive class instances and the remaining instances are

considered as negative class instances. In a multimedia data set, each instance is often
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attached with multiple labels. It is often difficult and requires complicated classifica-

tion models to address such a multi-label problem. However, the “positive-negative”

presentation of semantic concepts within a multimedia data set can simplify the multi-

label problem into an easy-to-solve single-label classification problem since many clas-

sification algorithms [109, 110] assumed an instance only has one label when they were

proposed.

The aforementioned MSM has a major limitation in that it requires a long training

time since there are too many parameters requiring iterative steps to decide. Particularly,

the iterative steps related to the selection of parameter γ in data filtering lead to a number

of singular value decomposition operations which are very computationally expensive,

especially for a large data set. The proposed binary-class subspace modeling (BSM)

can be regarded as the special case of MSM that deals with a binary class data set.

Compared with MSM, BSM has the following contributions:

• T he number o f involved parameters is reduced. Compared with MSM, the

assignment of a final label to an instance (by label coordinator) can be simplified.

For example, Equation (3.12) shows the MSM’s rule of assigning a positive class

label (P) instead of a negative class label (N) to an instance i.

DSMi
(P)

DSMthresh
(P)

<
DSMi

(N)

DSMthresh
(N)

. (3.12)

This equation can be simplified as:

DSM
(N)
i ·w−DSM

(P)
i > 0 (3.13)

where w = DSMthresh
(P)

DSMthresh
(N) . In this way, only one variable w is required instead of

DSMthresh
(P) and DSMthresh

(N).
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• PC selection is integrated with data f iltering. In MSM, the selection of data

filtering parameter γ is accompanied with a number of singular value decompo-

sition. In the proposed BSM framework, the singular value decomposition will

only be applied twice, one for the positive class and the other for the negative

class. The removal of part of the normal training instances in the PC selection

step of BSM achieves the same effect as data filtering in MSM. Thus, such an

integration reduces the computational cost and saves the time for training BSM

models.

Figure 3.6: Binary-class subspace modeling

Fig. 3.6 presents the framework of the proposed BSM. There are two dissimilarity

calculators: DCP for training a positive one-class model of the target concept and DCN

for training a negative one-class model for non-target concepts. Each training data in-

stance will get a pair of dissimilarity values, namely DisTrainP and DisTrainN, from

DCP and DCN , respectively. Later, a weighted parameter β is calculated and the la-

bel of each data instance is decided by comparing DisTrainP and DisTrain
′

N (which is

DisTrainN ∗β ). A model evaluation module then evaluates the performance of the al-
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gorithm and learns the optimal parameters automatically. Later, the optimal parameters

are passed into two dissimilarity calculators (DCP and DCN) for testing data instances to

calculate the pair of dissimilarity values (DisTestP and DisTestN). The ranking scores

and class labels for testing data instances are predicted by DisTestP and DisTest
′

N.

Dissimilarity Calculators

The dissimilarity calculators (DCP and DCN) consist of three steps: normalization, sub-

space projection, and dissimilarity calculation.

In the proposed approach, the z-score normalization process is applied separately to

positive and negative data instances. Taking DCP for example, the z-score normaliza-

tion scales each feature of positive training data instances to be a zero mean and unit

standard deviation. By means of normalization, (i) the characteristics of positive data

instances can be prevented from being dominated by a few large-scale features, and (ii)

the mean and standard deviation can roughly describe the statistical information about

the positive data instances. Equation (3.14) shows the utilized z-score normalization,

where X
′

stands for the data instances to be normalized, and mean(X
′
) and std(X

′
) are

the mean and standard deviation of X
′
.

X =
X
′
−mean(X

′
)

std(X
′
)

. (3.14)

The next step is subspace projection. Its main goal is to de-correlate the features.

The singular value decomposition (SVD) is adopted to de-correlate features of X in

the original space. Through this decomposition, a list of eigenvalue-eigenvector pairs

are derived, denoted as (λ1,PC1), (λ2,PC2), . . . , (λl,PCl). Each eigenvector here is

also called a PC (principal component). In addition, an analysis on eigenvalues can

help select representative eigenvectors to achieve dimension reduction, which simplifies

further analyses. The process to search those representative PCs (R PC1, R PC2, . . . ,
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R PCg) is important, since a suitable set of representative PCs will not only reduce the

dimension of the data (g< l) but also remove the dimensions that are linearly dependent

on the others (i.e., dimensions f whose eigenvalues λ f = 0).

One of the contributions of BSM compared with MSM lies in its PC selection

method. The process to search for those representative PCs consists of the following

five steps:

(1) Instances X = {xm} are projected as Y = {ymr} onto the PC subspace as Equa-

tion (3.15), where the r-th column of Y , Yr, satisfies the normal distribution where the

variance equals λr.

ymr = Xm ·PCr = xm1y1r + xm2y2r + ...+ xmlylr, (3.15)

where

• Xm is the m-th data instances of X ;

• PCr is the r-th PC corresponding to λr.

(2) A confidence interval ε is used to calculate the lower and upper bounds of Yr

corresponding to normal data instances to reduce the influence of noisy data.

(3) A variable called ω which denotes the percentage of abnormal data instances

that lie outside the boundary calculated on a certain PC.

(4) Rank all PCs based on their corresponding ω values. The PC with the largest ω

value ranks first, the second largest follows, and etc.

(5) Search the optimal combination of PCs using the first K ranked PCs. In this way,

different PCs can be ranked and combined to reduce the time complexity of searching

representative PCs (R PC).

For further process, the normalized data instances X are projected on the subspace

spanned by these representative PCs using SCh=X ·R PCh, representing the score of
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the h-th representative PC. Utilizing the important property, namely mean(SCh)= 0 and

var(SCh)= λh, a dissimilarity distance measure can be defined to measure the closeness

of each data instance to different training models.

Since each column is already uncorrelated as a result of subspace projection to-

gether with the aforementioned property of the projected data, a dissimilarity measure

called Dis (shown in Equation (3.16)) can be obtained, where SCh is calculated from

the previous step and λh is the h-th eigenvalue from SVD (λh > 0). This measure is the

square of the chi-square distance as shown and proved as follows.

Dis(SC) = ∑
h

(SCh)
2

λh

. (3.16)

Proof 1 Suppose there is a function ChiS(x) = Dis(x)
1
2

• Non-negative: it is obvious to see that ChiS(x)≥ 0;

• Symmetric: it is also easy to prove that ChiS(x− y) =ChiS(y− x);

• Triangle inequality: for n-dimension vectors x= [x1,x2, ...,xn] and y= [y1,y2, ...,yn],

suppose substituting (xh/λ
1/2

h
) with x

(new)
h

. The proof of the triangle inequality of

ChiS(x) is the same as that of the triangle inequality of n-Dimensional Euclidean

distance.

Weight Parameter and Model Evaluation

Here is the example of DCP. The dissimilarity value for positive data instances is small.

However, since the negative data instances may be heterogeneous to the positive data

instances in their data characteristics, they usually hold large dissimilarity values, indi-

cating their poor fitness to the positive model. The dissimilarity value can therefore be

used to distinguish the negative data instances from the positive instances. The same

rules hold for positive data instances to the negative model.
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Typically, there are too many misclassifications due to the data imbalance issue. By

introducing a weight parameter, the algorithm can offer a fair treatment to the positive

model, preventing it from being dominated by the negative model. The model evalua-

tion part is quite significant in that it tunes β to achieve the optimal (or near-optimal)

classification performance. The best β for the training model is searched via a small-

step iteration by evaluating the F1-score of the training model.

From the empirical study, init value=−0.3, end value=0.3, and the step size s=0.01.

The process to select optimal β can be found as follows.

SELECTION OF OPTIMAL β

1 F1best← 0;

2 βOPT ← init value;

3 for β ← init value to end value with step s

4 compute F1 using current β

5 if F1 is higher than F1best then

6 F1best← F1;

7 βOPT ← β ;

8 end

Classification Rules

After applying each testing data instance to two dissimilarity calculators (DCP and

DCN) built by training data instances, the dissimilarity values DisTestP and DisTestN

can be obtained. By comparing DisTestP and DisTest
′

N (=DisTestN × βOPT ), it assigns

the data instance with positive or negative label according to its dissimilarity towards

positive and negative models. If DisTestP = DisTest
′

N, then the classifier assigns the

data instance to the positive class considering that the cost of misclassifying a positive
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data instance is higher than that of misclassifying a negative one. The classification

rules are as follows.

• If DisTestP ≤ DisTest
′

N, assign positive label to the data instance;

• If DisTestP > DisTest
′

N, assign negative label to the data instance.

The dissimilarity from BSM can also be used to generate ranking scores to measure

the relevance of an instance to the target class (this will be used in later sections). With

regard to a typical relevant positive data instance, it should be close to the positive model

and far away from the negative model. In other words, DisTest
′

N should be large and

DisTestP should be small. Thus, the ranking score RS of a BSM is defined in Equation

(3.17).

RS = DisTest
′

N−DisTestP (3.17)

A larger value of RS indicates a higher probability of the data instance belonging to

the positive class. The proposed ranking strategy emphasizes the comparison of the

dissimilarity that a data instance holds towards the positive model and negative model.

The time complexity of the BSM is O(N2) at the training phase, which is mainly from

the process of SVD, while such time complexity is O(1) at the testing phase.

Experiments and Results

The high-level semantics to be extracted in the experiment are from TRECVID 2008

and 2009. “Bridge”, “emergency vehicle”, “kitchen”, “two people”, “driver”, “street”,

“mountain” and “flower” are the concepts in TRECVID 2008 while “classroom”, “door-

way”, “airplane-flying”, “bus”, “cityscape”, “demonstration protest”, “hand” and “singing”

are from TRECVID 2009. The statistics information of these semantic concepts is

shown in Table 3.7. There are various types of videos in TRECVID video collections,

such as news magazines, science news, news reports, documentaries, educational pro-
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Table 3.7: Information of high-level semantic concepts to be extracted, with name,

number of positive instance in the testing set, and the ratio between positive and negative

instances.

index name no. pos pos/neg

1 bus 38 0.009

2 emergency vehicle 72 0.018

3 airplane flying 109 0.027

4 bridge 160 0.040

5 kitchen 169 0.042

6 demonstration protest 181 0.045

7 doorway 206 0.052

8 mountain 257 0.065

9 driver 263 0.066

10 flower 283 0.071

11 classroom 291 0.073

12 singing 292 0.074

13 cityscape 442 0.112

14 street 651 0.168

15 hand 928 0.242

16 two people 1534 0.420

gramming, and archival videos, which might be black-and-white or colored, and may or

may not have sound. Therefore, experiments on these high-level concepts from TRE-

CIVD videos could show the accuracy, robustness, and adaption of the proposed binary-

class subspace modeling framework.

To show the efficiency and effectiveness of the proposed framework, it is com-

pared with several other well-known classifiers, including K-nearest neighbor with K=3

(3NN), multilayer perceptron (MP), support vector machines (SVM), support vector

machines with chi-square kernel (Chi), rule based JRip (JR), decision tree (C4.5), and

AdaBoost with decision tree kernel (Ada). To get a standard implementation of each

classification algorithm, the implementation in Waikato Environment for Knowledge

Analysis (Weka) is adopted to perform the comparative experiment. The parameters of

different classifiers is also tuned in the hope that the classifier is compared fairly with
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them. To evaluate the framework, the precision (pre), recall (rec), and F1-score (F1)

performance metrics are adopted under the three-fold cross-validation approach.

The performance of BSM compared with seven other classifiers for all sixteen dif-

ferent concepts is shown from Table 3.8 and Table 3.9. From these tables, it can be seen

BSM outperforms the other classifiers in both tables. The average performance over all

concepts is shown in Table 3.10. It is obvious that BSM’s F1-score value is on average

at least 7% better than the other classifiers. Unlike Chi (SVM with Chi-square kernel),

which has a high recall but an unacceptable low precision; and Ada (AdaBoost with

Decision Trees kernel), which has a high precision but unacceptable low recall, BSM

makes the best trade-off between precision and recall. Moreover, although the training

steps require SVD decomposition, which might be expensive (O(N2)), together with

one PC selection step (O(N)) and an iteration to get optimal β value (O(N)), the to-

tal complexity of the training stage is O(N2) because of that SVD decomposition , PC

selection and parameter optimization are not embedded into each other.

One highlight worth pointing out is that for those extremely imbalanced data, BSM

can still work (though the performance is considered poor) while the other classifiers

almost could not build good models. Take concepts “emergency vehicle” (in Table 3.8)

and “bus” (Table 3.9) for example. As shown in Table 3.7, the number of positive

instances for these two concepts are less than 100, but BSM reaches the highest F1-

score value while the other classifiers even have 0 values for the F1-score.

3.2.3 Integration of Subspace Modeling on Global and Local Structures

Two subspace modeling methods (MSM and BSM) aiming to handle the semantic

gap issue in multimedia information retrieval are proposed, which try to capture the

overall structure of each class and construct subspaces where the classification rules

are generated. The challenge in capturing the overall structure of each class is that

the distribution of the data is rather complex and far from the Gaussian distribution in
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Table 3.8: Comparative performance for eight concepts

Bridge 3NN Ada C4.5 JR MP SVM Chi BSM

precision 0.34 0.44 0.31 0.44 0.21 0.00 0.03 0.19

recall 0.10 0.10 0.10 0.03 0.08 0.00 0.44 0.23

F1 0.15 0.16 0.15 0.05 0.11 0.00 0.06 0.20

E. vehicle 3NN Ada C4.5 JR MP SVM Chi BSM

precision 0.17 0.11 0.00 0.00 0.02 0.00 0.02 0.06

recall 0.01 0.00 0.00 0.00 0.00 0.00 0.36 0.03

F1 0.03 0.01 0.00 0.00 0.01 0.00 0.03 0.04

Kitchen 3NN Ada C4.5 JR MP SVM Chi BSM

precision 0.32 0.37 0.16 0.12 0.13 0.00 0.04 0.15

recall 0.07 0.06 0.04 0.01 0.04 0.00 0.47 0.16

F1 0.11 0.10 0.06 0.02 0.06 0.00 0.07 0.15

Two people 3NN Ada C4.5 JR MP SVM Chi BSM

precision 0.42 0.48 0.49 0.52 0.43 0.00 0.29 0.38

recall 0.33 0.37 0.29 0.23 0.47 0.00 0.54 0.68

F1 0.37 0.42 0.36 0.31 0.43 0.00 0.38 0.48

Driver 3NN Ada C4.5 JR MP SVM Chi BSM

precision 0.27 0.37 0.36 0.11 0.21 0.00 0.06 0.19

recall 0.06 0.07 0.06 0.01 0.06 0.00 0.41 0.17

F1 0.10 0.12 0.10 0.01 0.09 0.00 0.10 0.17

Street 3NN Ada C4.5 JR MP SVM Chi BSM

precision 0.30 0.39 0.33 0.42 0.34 0.00 0.13 0.25

recall 0.15 0.20 0.15 0.06 0.19 0.00 0.42 0.48

F1 0.20 0.26 0.20 0.11 0.24 0.00 0.20 0.32

Mountain 3NN Ada C4.5 JR MP SVM Chi BSM

precision 0.16 0.24 0.18 0.19 0.14 0.00 0.06 0.12

recall 0.04 0.04 0.05 0.01 0.07 0.00 0.45 0.17

F1 0.06 0.06 0.08 0.01 0.09 0.00 0.11 0.14

Flower 3NN Ada C4.5 JR MP SVM Chi BSM

precision 0.21 0.14 0.13 0.00 0.17 0.00 0.06 0.13

recall 0.05 0.03 0.02 0.00 0.04 0.00 0.43 0.16

F1 0.08 0.04 0.04 0.00 0.07 0.00 0.11 0.15
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Table 3.9: Comparative performance for another eight concepts

Classroom 3NN Ada C4.5 JR MP SVM Chi BSM

precision 0.18 0.31 0.19 0.00 0.19 0.00 0.06 0.16

recall 0.05 0.07 0.03 0.00 0.08 0.00 0.42 0.24

F1 0.08 0.11 0.05 0.00 0.11 0.00 0.11 0.18

Doorway 3NN Ada C4.5 JR MP SVM Chi BSM

precision 0.26 0.22 0.23 0.14 0.22 0.05 0.05 0.20

recall 0.04 0.05 0.05 0.01 0.11 0.41 0.41 0.22

F1 0.07 0.08 0.09 0.02 0.15 0.08 0.08 0.21

A. flying 3NN Ada C4.5 JR MP SVM Chi BSM

precision 0.24 0.53 0.42 0.44 0.24 0.00 0.03 0.16

recall 0.04 0.09 0.08 0.06 0.03 0.00 0.43 0.13

F1 0.07 0.15 0.13 0.11 0.06 0.00 0.05 0.14

Bus 3NN Ada C4.5 JR MP SVM Chi BSM

precision 0.22 0.13 0.00 0.00 0.14 0.00 0.01 0.54

recall 0.02 0.02 0.00 0.00 0.05 0.00 0.32 0.04

F1 0.03 0.03 0.00 0.00 0.08 0.00 0.01 0.08

Cityscape 3NN Ada C4.5 JR MP SVM Chi BSM

precision 0.25 0.28 0.23 0.83 0.21 0.00 0.04 0.18

recall 0.09 0.10 0.08 0.05 0.10 0.00 0.40 0.25

F1 0.13 0.15 0.12 0.09 0.13 0.00 0.07 0.21

D.Protest 3NN Ada C4.5 JR MP SVM Chi BSM

precision 0.32 0.43 0.23 0.83 0.21 0.00 0.04 0.22

recall 0.10 0.06 0.08 0.05 0.10 0.00 0.40 0.16

F1 0.15 0.11 0.12 0.09 0.13 0.00 0.07 0.18

Hand 3NN Ada C4.5 JR MP SVM Chi BSM

precision 0.30 0.37 0.36 0.42 0.35 0.00 0.19 0.30

recall 0.16 0.20 0.16 0.08 0.16 0.00 0.51 0.43

F1 0.21 0.26 0.22 0.14 0.21 0.00 0.28 0.34

Singing 3NN Ada C4.5 JR MP SVM Chi BSM

precision 0.34 0.47 0.33 0.45 0.30 0.00 0.06 0.20

recall 0.11 0.15 0.18 0.11 0.13 0.00 0.38 0.32

F1 0.16 0.22 0.23 0.18 0.17 0.00 0.11 0.23
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Table 3.10: Average comparative performance for all concepts

AVERAGE 3NN Ada C4.5 JR MP SVM Chi BSM

precision 0.27 0.33 0.25 0.27 0.22 0.00 0.08 0.21

recall 0.08 0.09 0.08 0.04 0.10 0.02 0.40 0.25

F1 0.12 0.14 0.12 0.07 0.13 0.01 0.12 0.21

real cases. Therefore, the proposed MSM and BSM may encounter difficulties when

facing non-Gaussian data distributions. On the other hand, the data instances with the

same labels tend to have some common local structures. For example, the projection of

the instances that have the same labels as the target class could fall in the discretized

interval which has a strong correlation with the target class. Therefore, the study should

explore and include such common local structures in the classification rules to improve

the performance of semantic information retrieval. In this chapter, a new classification

framework that integrates both the global structure and the local structure is proposed.

The Propose Framework

Figure 3.7: Training phase

The training phase and testing phase of the proposed framework, subspace mod-

eling on global and local structure (SMGL), are shown in Figure 3.7 and Figure 3.8,
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respectively. The framework is designed for a binary-class classification. Binary-class

datasets are commonly seen in the semantic concept retrieval task, where one class rep-

resents a semantic concept (referred to as the target class or positive class) and the other

class is formed by the instances which do not contain that semantic concept (referred

to as the non-target class or negative class). As can be seen from the training phase,

the training data are first divided into positive training data (labeled as positive class)

and negative training data (labeled as negative class). Then, by following the basic idea

of BSM, normalization and PC subspace derivation is included to calculate the global

dissimilarity of the training data with regard to both the positive class and the negative

class within the positive PC subspace and the negative PC subspace. To consider the

local structure of the instances belonging to the positive (negative) class, the projected

training data on the positive (negative) class are discretized into several intervals on all

features, each of which forms the so-called feature-value pair.

Later, multiple correspondence analysis (MCA) measures the correlation between

each feature-value pair and the two classes. Such a correlation is represented by the

cosine value of the angle between the feature-value pair and the classes’ projection on

the first two major principal components within the MCA. The correlation of feature-

value pairs to the positive (negative) class indicates the local similarity of an instance to

the positive (negative) class. Then classification rules are generated from the global dis-

similarity and the local similarity of training instances towards the positive and negative

classes.

In the testing phase (see Figure 3.8), each testing instance goes through normaliza-

tion and is projected on the positive and the negative PC subspace, respectively. Then,

the global dissimilarity to the positive and the negative classes is calculated from the

projected data on the positive and negative PC subspaces. By converting the projected
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Figure 3.8: Testing phase

data into nominal representation (feature-value pairs) and further into the correlations

to the positive and the negative classes, the local dissimilarity is also derived. The clas-

sification rules are then applied on these global dissimilarity and local similarity values

to predict the labels of the input instances.

Calculation of Global Dissimilarity

Let X (p)={X
(p)
1 , X

(p)
2 , . . . , X

(p)
m } be a set of positive training instances and X (n)={X

(n)
1 ,

X
(n)
2 , . . . , X

(n)
t } be a set of negative training instances. The whole training set X (X=X (p)

⋃
X (n)) is composed of the positive training set X (p) and the negative training set X (n),

which contains m positive training instances and t negative training instances. Each

instance in X is also represented by a feature vector. Assuming the dimensionality of

the features is k, a positive instance X
(p)
i is denoted as a vector [X

(p)
i1 , X

(p)
i2 , . . . , X

(p)
ik ]

and a negative instance X
(n)
i is denoted as a vector [X

(n)
i1 , X

(n)
i2 , . . . , X

(n)
ik ].

The objective of the normalization step is to prevent some features with large values

from dominating those features with small values. In the proposed framework, Z-score

normalization (shown in Equation (3.18) and (3.19)) is applied on X (p) and X (n).
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Norm(p) =
X (p)−µ(p)

σ (p)
. (3.18)

Norm(n) =
X (n)−µ(n)

σ (n)
. (3.19)

Norm
(p)
train =

X−µ(p)

σ (p)
. (3.20)

Norm
(n)
train =

X−µ(n)

σ (n)
. (3.21)

where µ(p) and σ (p) are the mean and standard deviation of X (p); µ(n) and σ (n) are the

mean and standard deviation of X (n).

For normalized positive instances and negative instances, a PC subspace is gener-

ated for each of them from the covariance matrix of the normalized instances. The

eigenvalues and PC subspace are derived using singular value decomposition, as shown

in Equation (3.22) and Equation (3.23) for the positive and negative instances.

Norm(p)′ ∗Norm(p) =U (p) ∗Σ(p) ∗PC(p)′. (3.22)

Norm(n)′ ∗Norm(n) =U (n) ∗Σ(n) ∗PC(n)′. (3.23)

For positive instances, let λ (p) (λ (p) = [λ
(p)
1 , . . . , λ

(p)

ρ(p)]) be the sorted positive diagonal

values of Σ(p) in a descending manner and the corresponding eigenvectors are denoted

as PPC(p) (PPC(p)=[PC
(p)
1 , . . . , PC

(p)

ρ(p)]). Likewise, λ (n) (λ (n) = [λ
(n)
1 , . . . , λ

(n)

ρ(n)]) and

PPC(n) (PPC(n)=[PC
(n)
1 , . . . , PC

(n)

ρ(n)]) are defined for the negative instances. The train-

ing instances are then projected on the positive subspace spanned by PPC(p) and the

negative subspace spanned by PPC(n) to get the projected training instances on positive

and negative subspaces, as shown in Equation (3.24) and Equation (3.25).

η(p) = Norm
(p)
train ∗PPC(p). (3.24)

η(n) = Norm
(n)
train ∗PPC(n). (3.25)
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where Norm
(p)
train and Norm

(n)
train is calculated by (3.20) and (3.21), respectively. The

global dissimilarity with regard to the positive class and the negative class is derived as

shown in Equation (3.26) and Equation (3.27).

Ω
(p)
i =

ρ(p)

∑
j=1

η
(p)2

i j

λ
(p)
j

. (3.26)

Ω
(n)
i =

ρ(n)

∑
j=1

η
(n)2

i j

λ
(n)
j

. (3.27)

(3.28)

where η
(p)
i j is the projection on the j-th PC of the i-th instances in the training set (Xi).

For the positive instances, Ω
(p)
i is distributed close to 0.For the negative instances, Ω

(n)
i

is distributed close to 0. Therefore, Ω
(p)
i and Ω

(n)
i shows the dissimilarity of Xi to

the positive class and the negative class from the perspective of the characteristics of

the positive class and negative class. The global dissimilarity is shown to be effective

in classifying binary dataset in previous sections (MSM and BSM). This chapter will

integrate local similarity with the global dissimilarity to form the classification rules.

Calculation of Local Similarity

The local similarity is calculated based on the projected data within the positive PC

subspace and the negative PC subspace. From the early description, η(p) and η(n) are

the projection of the normalized training instances on positive PC subspace and neg-

ative PC subspace. To capture the local structure that may have correlation with the

classes, a discretization method is necessary to partition each feature into several inter-

vals representing the range of continuous values, which are also called feature-value

pairs. There are several discretization methods to be chosen. Broadly speaking, these

discretization methods fall into two categories: unsupervised discretization and super-

vised discretization. A simple unsupervised discretization method is “equal interval
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width” that divides the values of a feature into M equal-sized bins, where parameter

M is defined by the users. The unsupervised methods ignore the class distribution

on the continuous feature values and therefore the classification information will be

lost by partitioning a continuous range into several intervals. Therefore, a supervised

discretization method is adopted in the discretization step in the proposed framework.

Among them, a minimum description length (MDL)-based method proposed in [111] is

employed to discretize η(p) and η(n), where minimum description length principal is

used to determine the stopping criteria for the recursive discretization steps. Figure 3.9

shows an example of discretization and conversion from numeric values to feature-value

pairs. As can be seen from the figure, there is a mapping table recording the feature-

Figure 3.9: An example of feature discretization

value pairs and their corresponding intervals, which can be used to convert the numeric

values into nominal values. Since a feature-value pair may have different correlations

with the classes, which implies the local structure in terms of these feature-value pairs

of the instances contains classification information (such as local similarity), it requires
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a correlation-based method to derive and measure such correlations. On the other hand,

multiple correspondence analysis (MCA) is commonly applied to capture the correla-

tion between multiple nominal variables. Therefore, the proposed framework utilizes

MCA to measure the correlation between the feature-value pairs and the positive (or

negative) class. Furthermore, such a correlation is defined as the local similarity to-

wards the positive (or negative) class. The procedure to derive the correlation between

the feature-value pairs and the classes is shown as follows.

DERIVING CORRELATION USING MCA

1 FOR each feature

2 Construct an indicator matrix Z with columns representing feature-value pairs

and also class labels and rows representing instances.

3 Generate probability matrix P = B/N from Burt matrix B = ZT Z, where N is

the grand total of Burt matrix B.

4 Derive the residual matrix S = D−1/2(P−V TV )D−1/2, where V is the column

total of P and D is a diagonal matrix whose diagonal elements equals to those

in V .

5 Apply singular value decomposition to S using UΣQT = SV D(S).

6 Project S on the subspace spanned by first two major principal components

of Q as R.

7 Output the cosine value of the angle between each feature-vector pair and each

class as the correlation value.

8 END

Figure 3.10 shows an example of the projected data (R) in a two-dimensional pos-

itive PC subspace (the first and second principal components are selected). The angle

between the feature-vector pair F1
1 (F2

1 ) and the positive class is denoted as α (β ). The
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correlation of F1
1 (F2

1 ) with the positive class is the cosine value of α (β ). It is clear that

the correlation between F1
1 and the positive class is negative to the correlation between

F1
1 and the negative class. In the proposed framework, the correlation of each feature-

value pair towards the positive class is concerned within the positive PC subspace while

the correlation of each feature-value pair towards the negative class is concerned within

the negative PC subspace.

Figure 3.10: Correlation in terms of angles

Let W
j

i be the correlation of F i
j with the positive class within positive subspace

which is created by MCA. For each instance with a vector of feature-value pairs, the

correlation value for a feature-value pair F i
j can be looked up by searching the cor-

responding W
j

i . Then, the average of all the correlation values are defined as the lo-

cal similarity in that an instance with a larger average correlation value indicating the

higher probability that it belongs to a positive class. An example of calculating such

local similarity is shown in Figure 3.11. The local similarity can be interpreted as a

value to show the likelihood of an instance belonging to a positive class on average.

For an instance i, the local similarity to the positive class in the positive PC subspace

is defined as M
(p)
i , and the local similarity to the negative class in the negative PC sub-
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space is defined as −M
(n)
i . Please note M

(n)
i is the local similarity to the positive class

in the negative PC subspace, which holds a value negative to the local similarity to the

negative class, as implied in Figure 3.10.

Figure 3.11: Calculate the local similarity of an instance

Generation of Classification Rules

The core of the proposed framework is to integrate the global dissimilarity and local

dissimilarity of the instances into the classification rules. The classification methods

proposed previously (such as MSM and BSM) only consider the global dissimilarity to

generate the classification rules. In the proposed framework, the local dissimilarity is

also taken into consideration. The proposed classification rules are shown as follows:
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CLASSIFICATION RULES

1 if
M

(p)
i

Ω
(p)
i

> −
M

(n)
i

Ω
(n)
i

+ β

2 predict instance i’s class label as positive.

3 else

4 predict instance i’s class label as negative.

5 end

The item
M

(p)
i

Ω
(p)
i

is the similarity of an instance i to the positive class from the per-

spective of global ( 1

Ω
(p)
i

) and local (M
(p)
i ) similarity. The smaller the Ω

(p)
i is, the larger

global similarity an instance i holds. Similarly, the item −
M

(n)
i

Ω
(n)
i

is the similarity of an

instance i to the negative class by including both the global and local similarities to the

negative class. The parameter β is a bias added to improve the classification perfor-

mance, which can be determined by searching the β corresponding to the maximum

classification performance (in terms of F1) of a positive class. Like MSN and BSM,

SMGL holds a time complexity of O(N2) at the training phase and O(1) at the testing

phase.

Experiment

To validate the effectiveness of the proposed framework, experiments are conducted

on several binary datasets from TRECVID2008 video collections. Forty-eight dimen-

sional features are selected for different semantic concepts from a total number of 513

audio-visual features, including color histogram, edge histogram, wavelet texture and

spectrum flux, and etc. Table 3.11 shows a list of binary datasets used in the experiments

and their sources.

The proposed framework’s performance (SMGL) is measured against several other

well-known classification frameworks, including nearest neighbor (NN), K-nearest neigh-
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Table 3.11: Binary datasets and their sources

concept name source

two people TRECVID2008

driver TRECVID2008

street TRECVID2008

mountain TRECVID2008

flower TRECVID2008

Table 3.12: Performance of classification on concept “two people”

Classifier Precision Recall F1-score

SMGL 0.34 0.89 0.49

NN 0.40 0.42 0.41

3NN 0.42 0.34 0.38

MP 0.44 0.40 0.42

Ada 0.48 0.37 0.42

Chi 0.32 0.44 0.37

JRip 0.52 0.20 0.29

J48 0.49 0.31 0.37

Table 3.13: Performance of classification on concept “driver”

Classifier Precision Recall F1-score

SMGL 0.12 0.27 0.17

NN 0.15 0.14 0.15

3NN 0.21 0.04 0.07

MP 0.17 0.07 0.10

Ada 0.32 0.07 0.12

Chi 0.06 0.43 0.10

JRip 0.00 0.00 0.00

J48 0.39 0.06 0.10
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Table 3.14: Performance of classification on concept “street”

Classifier Precision Recall F1-score

SMGL 0.22 0.56 0.31

NN 0.26 0.26 0.26

3NN 0.32 0.17 0.22

MP 0.37 0.14 0.20

Ada 0.41 0.21 0.28

Chi 0.14 0.40 0.20

JRip 0.42 0.06 0.11

J48 0.34 0.18 0.23

Table 3.15: Performance of classification on concept “mountain”

Classifier Precision Recall F1-score

SMGL 0.09 0.44 0.15

NN 0.13 0.13 0.13

3NN 0.16 0.04 0.06

MP 0.16 0.08 0.10

Ada 0.26 0.05 0.09

Chi 0.06 0.42 0.11

JRip 0.10 0.01 0.01

J48 0.14 0.04 0.06

Table 3.16: Performance of classification on concept “flower”

Classifier Precision Recall F1-score

SMGL 0.11 0.36 0.17

NN 0.17 0.16 0.16

3NN 0.24 0.06 0.10

MP 0.15 0.09 0.11

Ada 0.22 0.04 0.06

Chi 0.06 0.51 0.11

JRip 0.00 0.00 0.00

J48 0.17 0.01 0.02
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Table 3.17: Average performance of classification on all concepts

Classifier Precision Recall F1-score

SMGL 0.18 0.51 0.26

NN 0.22 0.22 0.22

3NN 0.27 0.13 0.17

MP 0.26 0.16 0.18

Ada 0.34 0.15 0.19

Chi 0.13 0.44 0.18

JRip 0.21 0.05 0.08

J48 0.30 0.12 0.16

bor when K=3 (3NN), multilayer perceptron (MP), support vector machines with chi-

square kernels (Chi), rule based JRip (JRip), decision tree (J48), and AdaBoost with

decision tree kernel (Ada), all of which are implemented by Weka [112] with parameter

tuning, aiming to have a fair comparison. Three-fold cross-validation is conducted and

the precision, recall, and F1-score (performance metrics) are adopted to evaluate the

performance of all classifiers.

Table 3.12 to Table 3.17 display the experimental results of all classifiers. As can be

seen from the results, the proposed framework is able to render better performance than

the comparative approaches in terms of F1. For example, the proposed framework is

at least 7% F1 better than the other classification frameworks for concept “two people”

and on average about 4% better than the other classification frameworks for all the

concepts.

3.3 Subspace Modeling for Imbalanced Data

Like other popular supervised classification algorithms, the MSM and BSM methods

are not specifically designed for imbalanced data. Therefore, both of them will suffer

from a data imbalance problem. To balance the ratio between the majority class (usually

negative class) and minority class (usually positive class), clustering-based subspace

modeling methods are proposed to cluster the negative class (majority class) into several
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negative data groups. In this manner, the ratio between each negative data group and

the positive class is more balanced than the original data set.

The advantages of such a clustering-based subspace modeling are as follows:

• The ratio between the majority class and minority class is decreased.

• No information is lost during the process of handling data imbalance.

• The training model of BSM can benefit from the clustering of the majority class.

The first two advantages are quite obvious. The third advantage can be seen when

tackling an imbalanced data set in which the majority class holds a large intra-class

variance and does not follow the normal data distribution. As implied by MSM and

BSM, which assume each class as a group of data that follow approximately a normal

distribution, such a characteristic of the majority class violates this assumption and thus

may compromise the classification performance of subspace modeling. However, after

clustering the majority class into several data groups, each data group has a smaller

intra-class variance. In addition, the data distribution of each group is closer to the

Gaussian distribution when its variance becomes smaller and smaller.

3.3.1 Clustering-based Subspace Modeling

Figure 3.12 shows the overall framework of CLUstering-based SUbspace MOdeling

(CLU-SUMO) [92]. In this framework, the negative training data set TrN is clustered

into K groups, namely TrN(1), . . . , TrN(K). Each of the K groups is combined with TrP

to from Group 1, . . . , Group K, as shown in Figure 3.12. Each Group K is modeled by

a BSM. In the classification phase, the ranking scores of a testing data instance from

BSMs of all groups and the original data set are then integrated using different weights.

The label of that testing data instance is then predicted by checking if the integrated
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Figure 3.12: The clustering-based subspace modeling

score is greater than zero or not. The learning and classification of CLU-SUMO is

shown in CODE 3.1.
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CODE 3.1: CLU-SUMO: LEARNING & CLASSIFICATION

1 Learning Step:

2 Divide training data set Tr into positive set TrP and negative set TrN.

3 Apply K-means method to cluster TrN into K clusters TrN(1), . . . , TrN(K).

Derive C(1), . . . , C(K), which are the centroids of TrN(1), . . . , TrN(K).

4 Build Group j by combining TrN( j) with TrP, j = 1, . . . ,K.

5 Apply subspace learning on the original data set as well as on Group 1 to Group K.

6 Classification Step:

7 For a testing data instance T s[i], apply subspace classification using the

parameters from subspace learning models and get the ranking scoresa from all

binary-class subspace models.

8 Derive the weight for Group j using Wj=exp(−1∗ ||T s[i]−C( j)||), j = 1, . . . ,K.

9 Calculate WeightedFinalScore by combining the weighted ranking scores

(ranking score multiplied by a weight) from all subspace models.

10 Predict T s[i] as positive, if WeightedFinalScore > 0.

11 Predict T s[i] as negative, otherwise.

athe ranking score can refer to BSM.

Experiment Setup

The data sets used in the experiments are from the MediaMill Challenge Problem [4],

which uses eighty-five hours of news and broadcast video data. There are five experi-

ments in the challenge problem and the training and testing data sets in Experiment 1

are used in the experiments. The training data set consists of 30,993 data instances and

120 attributes, while the testing data set has 12,914 data instances. The positive and

negative ratios for the concepts used in the experiment are shown in Table 3.18.

Five concepts are selected with positive to negative ratio between 0.043 to 0.074.

Therefore, these data sets are very imbalanced and thus suitable to prove the effective-

ness of the proposed framework.
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Table 3.18: The positive and negative training instance ratios for concepts

ID Concept Positives (P) Negatives (N) P-to-N ratio

16 building 2126 28867 0.074

19 car 1509 29484 0.051

20 meeting 1405 29588 0.048

21 female 1359 29634 0.046

22 military 1283 29710 0.043

.

Table 3.19: Performance of classification on concept “building”

Classifier Precision Recall F1

CLU-SUMO 0.28 0.56 0.37

BSM 0.33 0.34 0.33

SVM 0.45 0.19 0.27

NB 0.20 0.54 0.30

NN 0.29 0.19 0.23

KNN (K=3) 0.24 0.38 0.29

Ada 0.33 0.17 0.22

C4.5 0.29 0.28 0.28

MP 0.37 0.31 0.34

Table 3.20: Performance of classification on concept “car”

Classifier Precision Recall F1

CLU-SUMO 0.25 0.32 0.28

BSM 0.43 0.19 0.26

SVM 0.34 0.24 0.28

NB 0.08 0.56 0.14

NN 0.28 0.25 0.27

KNN (K=3) 0.18 0.36 0.24

Ada 0.41 0.18 0.25

DC4.5 0.23 0.24 0.24

MP 0.28 0.20 0.23
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In the experiments, all classifiers take the same training and testing data sets and the

performance from all classifiers is evaluated in terms of F1-score, which is the harmonic

mean of precision and recall.

For BSM and CLU-SUMO, the init value, end value, and step s of β for the frame-

work are selected as −3, 3, and 0.02, respectively, in the learning phase of subspace

modeling. To balance the positive and negative classes in the generated data groups, K

is chosen to be 5 in the experiments so that the positive to negative ratio is, on average,

a little more than 1/5. With regard to the classification algorithms used for performance

comparison, a list of popular approaches such as support vector machines (SVM), naive

Bayes (NB), nearest neighbor (NN), K-Nearest Neighbor (KNN), AdaBoost with C4.5

algorithm (Ada), C4.5 algorithm (C4.5), and multilayer perceptron (MP) available in

Weka [112] are used. These classifiers produce the probability that a testing data in-

stance belongs to the positive class, which is defined as the probability of positiveness

(PoP) in this dissertation. Correspondingly, probability of negativeness (PoN) is de-

fined to describe the probability that a data instance belongs to the negative class. The

classification rules based on the PoP are shown as follows:



IF PoP≥ PoN,THEN assign positive label

IF PoP < PoN,THEN assign negative label

or in an equivalent form:



IF PoP≥ 0.5,THEN assign positive label

IF PoP < 0.5,THEN assign negative label

In response to the data imbalance issue, an adaptive threshold τ is used instead

of 0.5 to achieve an equivalent effect as the “reweighting” method. Therefore, the

classification rule is modified as follows.



IF PoP≥ τ,THEN assign positive label

IF PoP < τ,THEN assign negative label
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Table 3.21: Performance of classification on concept “meeting”

Classifier Precision Recall F1

CLU-SUMO 0.28 0.29 0.29

BSM 0.39 0.19 0.25

SVM 0.34 0.25 0.28

NB 0.07 0.84 0.12

NN 0.16 0.16 0.16

KNN (K=3) 0.13 0.33 0.19

Ada 0.25 0.17 0.20

C4.5 0.22 0.16 0.19

MP 0.22 0.35 0.27

Table 3.22: Performance of classification on concept “female”

Classifier Precision Recall F1

CLU-SUMO 0.15 0.22 0.18

BSM 0.17 0.15 0.16

SVM 0.18 0.11 0.14

NB 0.03 0.68 0.06

NN 0.08 0.15 0.10

KNN (K=3) 0.06 0.32 0.11

Ada 0.18 0.08 0.11

C4.5 0.08 0.14 0.11

MP 0.11 0.21 0.14

τ is searched from 0.1 to 1 with a small step size 0.02 for all the aforementioned

comparative algorithms to get their best F1-scores on the testing data. In this way, it is

believed to be more reasonable and fair to compare the proposed framework with these

comparative methods using an adaptive threshold.

Experimental Results and Analyses

The experimental results are shown from Table 3.19 to Table 3.23. The results reveal

that the proposed framework CLU-SUMO is better than or as good as all comparative

approaches with regard to all concepts used in the experiments. Table 3.24 shows that on

average CLU-SUMO is at least 3% better than the other comparative methods. Because

of the low F1-scores in the experiments, the 3% improvement is quite valuable. Another
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Table 3.23: Performance of classification on concept “military”

Classifier Precision Recall F1

CLU-SUMO 0.26 0.35 0.30

BSM 0.29 0.20 0.24

SVM 0.35 0.17 0.23

NB 0.11 0.70 0.20

NN 0.21 0.16 0.18

KNN (K=3) 0.17 0.30 0.22

Ada 0.28 0.08 0.13

C4.5 0.18 0.25 0.21

MP 0.28 0.26 0.27

contribution of CLU-SUMO is shown in Tables 3.19, 3.21, and 3.23. If the subspace

model is trained on the original data set alone, the performance in terms of F1-score

may be inferior to multilayer perceptron for some data sets. However, if clustering-

based subspace modeling is applied, the performance is the best among all the compared

classification algorithms. This improvement is from the weighted voting of these K+1

subspace models. K subspace models are created on K new data groups, which are

more balanced than the original data set. These learning models may capture better

positive class patterns than the model trained by only the original data set. However,

this statement is true only if K is appropriately selected. If K is too small, then the

improvement is not obvious. On the other hand, if K is too large, then within some new

data groups, the minority class could now be the negative class and the subspace models

may be overfitting to the positive class.

3.3.2 Integration of Class Selection and Clustering for Binary-class Subspace

Modeling

In Chapter 3.3.1, a clustering-based subspace modeling method called CLU-SUMO

was proposed. CLU-SUMO utilizes K-means clustering to build K negative data groups

from the original negative training subset. Each negative data group is combined with

the original positive training subset to generate K training data groups. Subspace mod-
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Table 3.24: Average F1 on all 5 concepts

Classifier mean F1

CLU-SUMO 0.28

BSM 0.25

SVM 0.24

NB 0.16

NN 0.19

KNN (K=3) 0.21

Ada 0.18

C4.5 0.20

MP 0.25

eling method is used to build models on each training data group as well as the orig-

inal imbalanced data set to predict the ranking score (soft label) for each testing data

instance. Next, a combination of these ranking scores is compared with a decision

threshold (the threshold is 0 in CLU-SUMO) to predict the final label of the testing data

instance. The CLU-SUMO framework has improved the classification performance

with the help of clustering the negative data instances.

Here, the CLU-SUMO classification framework is further enhanced by integrating

semantics information and clustering in the construction of a set of balanced data groups

to address the data imbalance issue for multimedia data. In CSC-SUMO, the following

enhancements are achieved.

• Speed up the model training procedure. In the proposed framework, the clustering

step is applied after some non-target concept classes are held out as negative data

groups. The idea behind such a hold-out strategy is that those data instances of the

non-target class usually share some common data characteristics and semantics.

Since the purpose of applying a clustering method is to find data groups whose

data instances share similar data characteristics, from the view of semantics, it

is reasonable to regard each non-target concept class as one negative data group
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Figure 3.13: Generation of balanced training subsets by class selection

though the intra-group similarity cannot be guaranteed to be as small as the one

generated by a clustering method.

• Some of the generated data groups hold semantic meanings. Each non-target

class corresponds to a particular concept. Therefore, the generated rules that rely

on these concepts can help to interpret their meanings. Furthermore, the seman-

tic relationship between concepts can potentially be utilized to help improve the

detection results of the target concept.

The proposed CSC-SUMO classification framework consists of three procedures:

the generation of balanced training subsets by class selection (as shown in Figure 3.13),

the generation of balanced training subsets by clustering (as shown in Figure 3.14), and

integrated subspace modeling and classification (as shown in Figure 3.15).

During the first procedure, a number of non-target concepts are selected based on the

following pre-defined criteria which are chosen via domain knowledge and empirical

studies.
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Figure 3.14: Generation of balanced training subsets by clustering

• The ratio of the selected non-target concept class to the target concept class should

fall within the interval of [0.5, 2].

• The overlapping of non-target concept class and target concept class should be

below 1%.

• The overlapping between the selected non-target concept classes must below

50%.

The first criterion ensures that each group in Figure 1 is balanced. The second cri-

terion requires the non-target concept class to overlap with the target concept as little

as possible, considering that too much overlap could make it hard to learn separation

rules from the generated balanced groups. The third criterion aims to reduce the num-

ber of groups generated by the first procedure. If the overlap between two non-target

concept classes is large, then it is not necessary to generate a data group for each of

them since one non-target concept class is already enough to describe the majority of

the data instances belonging to the other concept class. Since the selected non-target
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Figure 3.15: Integrated subspace modeling and classification

concept classes may not cover the whole negative subset of the target concept, the size

of the remaining negative data instances should be small, which will be the input to the

second procedure to cluster them into several data groups.

The advantages of utilization class label information lie in two areas: 1) the effi-

ciency of the clustering-based binary classification framework is enhanced; 2) it facili-

tates to interpret the semantic meanings within the generated rules.

In the second procedure, the K-means clustering method is used to cluster the re-

maining negative data instances after the first procedure to form more data groups. This

procedure is the same as the one proposed in CLU-SUMO. Until procedure 2, each

negative data instance is assigned to one or more data groups since the data groups gen-

erated from the first procedure may have some overlapping negative data instances (i.e.,

those data instances belonging to two or more selected non-target concept classes).
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All the balanced data groups and the original imbalanced training data set are trained

and optimized by the subspace modeling method, as shown in Figure 3.15. The learning

and classification (with the ranking scores) of the subspace modeling is briefly intro-

duced in CODE 3.2 and CODE 3.3. Please note that the subspace modeling used here

is a simplified version of BSM in order to speed up the training process. For example,

to reduce the iterative loops, the weight parameter β is not used in the learning phase

of BSM. The definitions of the functions used in CODE 3.2 and CODE 3.3 are shown

as follows.

Definition 1 (function Z) For an m×n matrix A = a(i, j) and a ρ×n matrix B,

Z(B,A) =




(B(1, :)−µ(A))/s(A)

.

.

.

(B(ρ , :)−µ(A))/s(A)




where µ(A)=[µ1(A), . . . ,µn(A)] is calculated by Equation (3.29) and s(A)=[s1(A), . . . ,sn(A)]

is calculated by Equation (3.30). It can be observed that Z(A,A) is the z-score normal-

ization of A.

µ j(A) =
1

m

m

∑
i=1

a(i, j), j = 1,2, . . . ,n (3.29)

s j(A) =

√
1

m−1

m

∑
i=1

(a(i, j)−µ j(A))2, j = 1,2, . . . ,n (3.30)
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CODE 3.2: SUBSPACE MODELING: TRAINING PHASE

1 Input:

(1) A set of training data instances Tr

(2) Training labels

2 Output: pl(opt), µ(TrP), µ(TrN), s(TrP),s(TrN), λ (TrP), λ (TrN),

PC(TrP), PC(TrN)

3 Divide training data set Tr into positive class TrP and negative class TrN

according to the training labels.

4 Apply normalization function Z and SVD to positive and negative classes and

derive the projected data PCP(Tr, PC(TrP)) and PCP(Tr, PC(TrN)).

5 Iteratively search pl to optimize the F1 Score of the learning model.

6 Output pl(opt) corresponding to the best F1 score,µ(TrP), µ(TrN), s(TrP)

and s(TrN), λ (TrP), λ (TrN), PC(TrP) and PC(TrN).

Definition 2 (SVD) The standard SVD (singular value decomposition) is shown in

Equation (3.31).

A =UΣV T . (3.31)

The SVD function of an m×n matrix A produces λ (A) and PC(A), where λ (A) is the

positive diagonal elements of ΣT Σ sorted in a descending manner. In other words,

λ (A)={λ1(A),. . . ,λθ(A)|λ1(A)≥ λ2(A)≥ ·· · ≥ λθ (A)> 0}. PC(A) is the eigenvectors

from V that correspond to the sorted λ (A).

Definition 3 (function PCP) Suppose there are an m× n matrix B = {b(i, j)} and

eigenvectors PC(A)={PC1(A), . . . ,PCθ (A)}, where PCi(A) is an n×1 vector, i=1,. . . .

The principal component projection (PCP) of B on PC(A) is defined as follows.

PCP(B,A) = {B∗PC1(A), . . . ,B∗PCθ(A)}. (3.32)
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Equation (3.32) shows that PCP(B,A) is an m× θ matrix. If PCP(x,y)(B,A) is used to

denote the element of PCP(B,A) at the x-th row and y-th column, then PCP(x,y)(B, A)

is the projection of the x-th row vector of B on y-th eigenvector of PC(A).

Definition 4 Based on Definitions 2 and 3, it can further defines the score function

Score(B,A, pl)=[Score1(B,A, pl), . . . , Scorex(B,A, pl), . . . , Scorem(B,A, pl)]T , where

Scorex(B,A, pl) is defined in Equation (3.33).

Scorex(B,A, pl) =
pl

∑
y=1

PCP(x,y)(B,A)×PCP(x,y)(B,A)

λy(A)
, (3.33)

where pl can be any integer between 1 and θ .

CODE 3.3: SUBSPACE MODELING: CLASSIFICATION PHASE

1 Input:

(1) Testing data instance T s[i], i=1 to ω (the total number of testing

data instances)

(2) Output from the learning phase: pl(opt), µ(TrP), µ(TrN), s(TrP),

s(TrN), λ (TrP), λ (TrN), PC(TrP), PC(TrN)

2 Output: ranking score of T s[i]

3 Derive the projected testing data instance by applying Z function and subspace

projection to calculate the Score(Ts[i], TrP, pl(opt)) and Score(Ts[i], TrN, pl(opt)).

4 Let S=Score(Ts[i], TrN, pl(opt))+Score(Ts[i], TrP, pl(opt))

5 Output (Score(Ts[i], TrN, pl(opt))-Score(Ts[i], TrP, pl(opt)))/S as the ranking

score of T s[i].

For a testing data instance Ts[i], the generated ranking scores from the subspaces

are combined by a score combination module to produce a final ranking score. The final

ranking score R f inal[i] of Ts[i] is calculated by Equation (3.34).

R f inal[i] = (L+K) ·R0 +
L+K

∑
j=1

e(−(1+||T s[i]−C j||)) ·R j, (3.34)
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Table 3.25: The positive and negative training instance ratios for concepts

concept Positives (P) Negatives (N) P-to-N ratio

car 1509 29484 0.051

military 1283 29710 0.043

vegetation 1198 19795 0.040

sports 1166 29827 0.039

graphics 897 30096 0.030

people marching 597 30396 0.020

soccer 517 30476 0.017

screen 475 30518 0.016

where C j is the centroid of the j-th negative data group generated either from the first

or the second procedure, and || · || stands for the norm operation. If R f inal[i] is larger

than a threshold value, then Ts[i] is predicted as positive. Otherwise, Ts[i] is predicted

as negative. In the experiment, this threshold value is set to 0.

Experiment Setup

The data sets used for the experiment are from news and broadcast videos [4]. The

training data set and testing data set are divided in advance by the provider. The training

data set is composed of a total of 30,993 data instances with 120 attributes, while there

are 12,914 data instances with the same number of attributes. A number of concepts

corresponding to an imbalanced binary-class data set are selected. The information

related to these concepts is shown in Table 3.25. The positive-to-negative (P-to-N) ratio

of these concepts varies between 0.016 to 0.051. Therefore, such imbalanced data sets

are suitable to evaluate the effectiveness of the proposed framework.

In the experiment, all classifiers take the same training and testing data sets and the

performance from all classifiers is evaluated in terms of F1 score. For CSC-SUMO, K

is carefully chosen so that the ratio of the positive data instances to the negative data

instances is on average 1:2, balancing the positive and negative classes in the generated

data groups.
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Table 3.26: Performance of classification on concept “car”

Classifier Precision Recall F1

CSC-SUMO 20.28% 45.56% 28.07%

AdaBoost-C4.5 48.20% 12.00% 19.20%

CostDTree 18.30% 21.70% 19.80%

ResampleLG 28.39% 26.76% 27.55%

Table 3.27: Performance of classification on concept “military”

Classifier Precision Recall F1

CSC-SUMO 23.98% 42.24% 30.59%

AdaBoost-C4.5 32.60% 5.30% 9.10%

CostDTree 17.90% 17.10% 17.50%

ResampleLG 16.32% 68.59% 26.37%

With regard to the classification algorithms used for performance comparison, a list

of popular approaches such as AdaBoost with C4.5 algorithm (AdaBoost-C4.5), cost-

sensitive decision tree (CostDTree) and classic re-sampling method are used, which are

available in Weka [112]. The cost matrix CM used by CostDTree is shown below.

CM =




0 1

ω 0




where ω is set to the negative-to-positive ratio for each target concept. For a re-sampling

method, a logistic regression model is trained on the re-sampled training data set and

later is used for predicting the class labels of testing data set. This method is denoted as

re-sampling with logistic regression model (ResampleLG). The re-sampling percentage

is tuned according to different data sets.

Experimental Results

The experimental results on the selected 8 concepts are shown from Table 3.26 to Table

3.33. The average F1 scores for all classifiers including CSC-SUMO are shown in Table

3.34. The results show that the proposed CSC-SUMO framework outperforms all the

comparative approaches in terms of F1 measure (about 10% to 16% improvement).
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Table 3.28: Performance of classification on concept “vegetation”

Classifier Precision Recall F1

CSC-SUMO 10.50% 67.11% 18.16%

AdaBoost-C4.5 39.10% 7.20% 12.10%

CostDTree 14.00% 16.40% 15.10%

ResampleLG 37.08% 11.02% 16.99%

Table 3.29: Performance of classification on concept “sports”

Classifier Precision Recall F1

CSC-SUMO 24.62% 33.23% 28.28%

AdaBoost-C4.5 58.50% 11.30% 18.90%

CostDTree 11.50% 20.80% 14.80%

ResampleLG 18.50% 31.45% 23.30%

Table 3.30: Performance of classification on concept “graphics”

Classifier Precision Recall F1

CSC-SUMO 45.69% 60.13% 51.92%

AdaBoost-C4.5 75.60% 28.30% 41.20%

CostDTree 34.00% 37.40% 35.60%

ResampleLG 35.35% 50.78% 41.86%

Table 3.31: Performance of classification on concept “people marching”

Classifier Precision Recall F1

CSC-SUMO 30.79% 24.95% 27.57%

AdaBoost-C4.5 36.70% 3.40% 6.20%

CostDTree 18.20% 18.90% 18.50%

ResampleLG 9.89% 75.23% 17.48%

Table 3.32: Performance of classification on concept “soccer”

Classifier Precision Recall F1

CSC-SUMO 71.88% 60.53% 65.71%

AdaBoost-C4.5 75.00% 55.30% 63.60%

CostDTree 9.10% 65.80% 15.90%

ResampleLG 12.80% 42.11% 19.63%
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Table 3.33: Performance of classification on concept “screen”

Classifier Precision Recall F1

CSC-SUMO 64.15% 13.88% 22.82%

AdaBoost-C4.5 82.40% 5.70% 10.70%

CostDTree 6.00% 11.40% 7.90%

ResampleLG 9.62% 23.67% 13.68%

Table 3.34: Average F1 on all concepts

Classifier mean F1

CSC-SUMO 34.14%

AdaBoost-C4.5 22.63%

CostDTree 18.14%

ResampleLG 23.34%

The performance of the ResampleLG method seems to be unstable. For example, for

some concepts like “car”, the F1 value of ResampleLG is slightly worse (about 0.5%)

than CSC-SUMO. However, for the concept “soccer”, the F1 value of ResampleLG is

much smaller than CSC-SUMO. This is due to the fact that resampling methods often

require an appropriate selection of sampling percentage, which has a large impact on

the prediction quality of the classifiers. However, it is often hard to determine such an

appropriate sampling percentage.

With regard to CostDTree, there is an inherent problem related to the configuration

of the cost matrix. Similar to the re-sampling method, it is also difficult to build a cost

matrix that can always render satisfactory classification results. The AdaBoost-C4.5

method is able to provide better results than CostDTree. However, it requires a time-

consuming model training process to achieve better results. In a situation where the

training time is a major concern, AdaBoost-C4.5 may have its limitations.

As shown previously, the weighted voting of all subspace models can improve the

classification results. This is mainly because these K subspace models were built on

balanced data sets, and each balanced learning model could learn the patterns belong-
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ing to the positive class accompanied by a proportion of data instances of the original

negative subset. The selection of K definitely will have an influence on the final classi-

fication results. On one hand, a small K value helps little to improve the classification

results in terms of F1 measure. On the other hand, a large K value may increase the

number of involved training models and could cause an overfitting problem, since too

few negative data instances are trained in each subspace model. In the training phase,

the CSC-SUMO and CLU-SUMO both have a time complexity of O(N2) because of

performing SVD. However, such a time complexity can be reduced to O(1) at the test-

ing phase.

3.4 Semantic Concept Retrieval using Inter-concept Relationships

The aforementioned classifiers mainly focus on individual model for a semantic con-

cept. However, the semantic concepts in the real world are often inter-correlated with

each other. Therefore, to improve further the performance of semantic concept re-

trieval based on the individual model, here several ranking strategies that utilize the

inter-concept co-occurrence to retrieve a target semantic concept are proposed.

3.4.1 Semantic Concept Retrieval using Inter-concept Co-occurrence

There is a list of peer work [47, 46] mentioned in Chapter 2.3. The difference between

the proposed framework and the peer work lies in the following aspects. First, previous

work regards correlation information as mutually useful. In other words, it considers

concept “A” and concept “B” as both target and reference concepts to each other under

the assumption that concept “A” and concept “B” would both benefit from their corre-

lation. However, this may not be true in reality since the difficulty to retrieve concepts

“A” and “B” is not consistent. For example, although concepts “road” and “outdoor”

have strong correlation, “road” is much more difficult to retrieve than “outdoor” as can
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be seen from [4]. Therefore, “road” may benefit from such a correlation from “outdoor”

because the correlation information from “outdoor” is quite reliable. Unfortunately on

the other side, “outdoor” may render worse performance if it utilizes the correlation

information with “road”. Therefore, in the proposed work, the correlation information

is utilized uni-directional. Only those easy-to-retrieve concepts are regarded as the ref-

erence concepts and of which the relationship will be used to refine the ranking of the

retrieved results of the target concepts. Second, the information of co-occurrence be-

tween concepts is viewed in a mutual manner in previous work. That is, only when

concept “A” and concept “B” both appear frequently, the relationship between “A” and

“B” becomes valuable. However, this co-occurrence between concepts is viewed in an

individual manner. As long as there is a large chance (e.g., 90%) that “B” will occur

when “A” appears, this co-occurrence relationship from “B” is valuable and should be

taken into consideration, no matter how low the chance of “A” would appear when “B”

occurs. It is worth mentioning that previous work may miss a co-occurrence relation-

ship that is not mutual, such as the co-occurrence relationship between “snow” and

“outdoor”. Finally, previous work studied the correlation between concepts on the con-

cept level. The inter-concept relationship is derived from the class labels. However, the

proposed framework further explores such an inter-concept relationship in the attribute

level (details to be explained in Chapter 3.4.1).

Definitions

Before elaborating the framework, several basic concepts and terms to be used in the

framework are first introduced.

Definition 5 (Target Concept) A target concept refers to a concept whose retrieval

performance is concerned by the current task.
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Definition 6 (Reference Concept) A reference concept refers to a concept whose oc-

currence is accompanied with the target concept with a high chance. A concept is

considered as a reference concept when (i) the concept has a high percentage of chance

to occur if the target concept appears, and (ii) the concept is easy to retrieve.

Definition 7 (Feature-value Pair) Suppose that one discretization method is applied

to an attribute Ai and creates a few partitions A1
i , A2

i , . . . , AP
i , where i is an identifier of

the attribute and P is the number of partitions created for attribute Ai. Each partition

is called a feature-value pair. Particularly, A
j
i stands for the j-th partition of attribute

Ai.

Definition 8 (DIAG Function) Let A = {a1,a2, ...,aN}
T be an N × 1 vector. A DIAG

function is defined in Equation (3.35) which transforms A into an N × N matrix D.

D = DIAG(A), (3.35)

where each element di j in D satisfies

di j =





ai if i = j;

0 otherwise.

Deriving attribute-based co-occurrence relationships

There are a number of ways to capture the inter-concept relationship. In this disserta-

tion, the focus is put on the correlations between the attributes and the co-occurrence

between the target concept and the reference concept. It will be more accurate to utilize

the inter-concept relationship on the attribute or sub-attribute level than on the concept

labels. Compared with those methods that capture the correlation between concepts

based on the class labels [94, 47], the proposed correlation in this dissertation is more

closely related with the observation details of the data instances.
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Figure 3.16: Construction of co-occurrence classes

To capture the aforementioned correlation, a co-occurrence class is built from the

training set as shown in Figure 3.16. The training data instances which belong to both

the target concept and the reference concept are in the positive-positive class (PP). The

rest of the training data instances are in the negative class (N). Since the attributes used

in semantic concept retrieval are mostly numeric, but some techniques that describe

the relationship between two attributes, like correspondence analysis, only take nomi-

nal data as the input, a discretization method is applied before deriving the correlation

and co-occurrence relationships. In this dissertation, the minimum description length

(MDL)-based supervised discretization method is employed to discretize the training

and testing data into several feature-value pairs corresponding to the co-occurrence

classes. After discretization, multiple correspondence analysis (MCA), which is able

to capture the correlation between more than two variables [113, 114], is employed to

build a correlation table for each feature-value pair and its impact weight.

The construction of the correlation table using MCA is discussed as follows. Sup-

pose there is a discretized input matrix Π ∈ Rη×η as shown in Table 3.35. Each row
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Table 3.35: A discretized input matrix

Attribute 1 ... Attribute T PP N

A1
1 ... A1

T 1 0

A2
1 ... A1

T 0 1

... ... ... ... ...

A1
1 ... A2

T 0 0

Table 3.36: Indicator matrix of the input matrix

A1
1 A2

1 ... A1
T A2

T ... PP N

1 0 ... 1 0 ... 1 0

0 1 ... 1 0 ... 0 1

... ... ... ... ... ... ... ...

1 0 ... 0 1 ... 0 0

stands for a data instance. A1
1 and A1

T are the feature-value pairs. For concept classes

such as PP and N, 1 means a data instance belongs to that class, while 0 means it does

not. For example, in Table 3.35, the first data instance has 1 on PP, meaning it contains

both the target concept and the reference concept.

The input matrix is accompanied with an indicator matrix and a Burt matrix. The

indicator matrix is an equivalent form to represent the discretized input matrix, where

each element is either 1 or 0. For example, the indicator matrix I of Table 3.35 is shown

in Table 3.36. The Burt matrix B is generated using Equation (3.36). Let g be the grand

total of B as shown in Equation (3.37). The probability matrix Γ is defined as Γ = B/g.

It is easy to observe that Γ is as symmetric as B and the element of Γ is between 0 and

1. CODE 3.4 shows the procedure to derive the impact weight of each feature-value

pair towards class PP from the probability matrix Γ.
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CODE 3.4: DERIVING IMPACT WEIGHTS FROM Γ

1 Input:

a probability matrix Γ ∈ Rη×η

2 Output:

impact weights W (A
j
i ,PP)

3 Calculate V ∈ Rη×1, which are the column totals of Γ.

4 Derive diagonal matrix D by applying Equation (3.35)

(see Definition 8) to V .

5 Generate a centralized matrix Z using Equation (3.38).

6 Apply eigendecomposition (see Equation (3.39)) on Z to

derive its eigenvectors Q={q1, q2,...,qη} in a descending

order of the corresponding eigenvalues.

7 Project Z as (X,Y) on the subspace spanned by q1

and q2, as shown in Equation (3.40).

8 Derive impact weights W (A
j
i ,PP) for each feature-value

pair A
j
i on class PP using Equation (3.41).

9 Output impact weights W (A
j
i ,PP) for A

j
i on PP.

B = IT I (3.36)

g =
K

∑
i=1

K

∑
j=1

bi j (3.37)

Z = D−
1
2 (Γ−VV T )(DT )−

1
2 (3.38)
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Z = QΛQ−1 (3.39)

(X ,Y) = Z ∗ (q1,q2) (3.40)

W (A
j
i ,PP) =

(XPP,YPP)
T · (X

A
j
i

,Y
A

j
i

)

|(XPP,YPP)| · |(XA
j
i

,Y
A

j
i

)|
. (3.41)

Figure 3.17: Detailed procedure of learning phase
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The proposed ranking framework

CODE 3.5: LEARNING PHASE

1 Input:

Training data instance Tr, training labels of the

target concept and reference concept.

2 Output:

Mapping table M1 and correlation table M2

3 Create co-occurrence class following the procedure of

Figure 3.16.

4 Apply supervised discretization method to discretize

the numeric training data. Create a mapping table M1

to store the generated feature-value pairs and their

corresponding ranges of partitions.

5 Apply MCA on the discretized data ∏ to generate

a correlation table M2 between feature-value pairs and

impact weights by following the procedure of CODE 3.4.

6 Output tables M1 and M2

The proposed ranking framework consists of two phases: a learning phase and a

ranking phase. It is assumed that the target concept is known and the reference con-

cept is appropriately selected based on the defined criteria or by empirical study. In the

learning step, the correlation between feature-value pairs and PP is learned and a re-

lationship is established via constructing a correlation table for each feature-value pair

and class PP from the training data instances (Tr). The detailed procedure of the learn-
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Table 3.37: An example of mapping table M1

Feature-value pair Partition range

A1
1 (-∞, -0.1]

A2
1 (-0.1, 2.2]

... ...

A
j
i (-5.1, -3]

... ...

Table 3.38: A correlation table M2
Feature-value pair impact weight

A1
1 W (A1

1,PP)

A2
1 W (A2

1,PP)
... ...

A
j
i W (A

j
i ,PP)

... ...

ing phase is shown in Figure 3.17 and CODE 3.5. The generated mapping table M1

(Table 3.37) records the feature-value pair with their ranges of values for an attribute.

The generated correlation table M2 (Table 3.38) is made of feature-value pairs and their

corresponding impact weights to class PP.

The ranking phase utilizes these two tables generated from the learning phase to

rank the ranking scores by considering the correlation between the target concept and

reference concept. Each testing data instance (T s) is described by a vector of attributes.

Therefore, after looking up mapping table M1 and correlation table M2, a vector of

feature-value pairs and impact weights are generated. The generated impact weights are

then summed together to form the ranking weight for each data instance. The details of

ranking phase can be found in Figure 3.18 and CODE 3.6.



www.manaraa.com

101

CODE 3.6: RANKING PHASE

1 Input:

Testing data instance T s, mapping table M1 and

correlation table M2 from the learning phase.

2 Output:

Final ranking score ReS

3 Get RS(Ts,ϕt), the ranking score of T s from ranking

model ϕt for the target concept.

4 Look up mapping table M1 and find the feature-value

pair vector.

5 Look up correlation table M2 and find the

corresponding impact weight vector.

6 Calculate the summation total W of the impact weight

vector and use W as the ranking weight.

7 Calculate ReS, the final ranking score of T s with regards to

the target concept by using ReS=RS(T s,ϕt)·(1+W ).

8 Output ReS

Experiment Setup

To show the effectiveness of the framework, experiments are conducted on the Medi-

aMill Challenge Data Set. The MediaMill Challenge Data Set contains 101 semantic

concepts and five different experiments. In the experiment, the features in the first ex-

periment are used. There are 30,993 data instances in the training data set and 12,914

data instances in the testing data set. For different semantic concepts, the testing data

set provides the ranking scores and labels of all testing data instances for evaluation.

The experiment is carried out by first building a co-occurrence probability matrix

CP from the training data set, in which each element CPi j is given by Equation (3.42).
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Figure 3.18: Detailed procedure of ranking phase

CPi j =
# of instances belonging to both concepts i and j

# of instances belonging to concept i
(3.42)

For a target concept i, a reference concept k is selected if

• CPik=max{CPi j};

• CPik > 0.9; and

• k 6= i.

Table 3.39 shows the target concept, reference concept and the co-occurrence prob-

ability (CP) with regard to the target concepts that are used in the experiment. It is worth

noting that the selection of the reference concepts does not require domain knowledge.

The selection is rather objective and depends only on the co-occurrence probability be-

tween the concepts. The performance is evaluated using average precision (AP), which

is commonly adopted to evaluate the effectiveness of the retrieval. The AP is defined in

Equation (3.43).
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Table 3.39: Concepts and their co-occurrence probability

Target Concept Reference Concept CP

entertainment people 0.93

urban outdoor 1

sky outdoor 1

road outdoor 1

map graphics 1

snow outdoor 1

AP =
1

‖I+‖

N̂

∑
ω=1

rω ·
1

ω

ω

∑
o=1

ro (3.43)

• ‖I+‖ is the number of relevant images with respect to the query concept;

• N̂ is the number of retrieved images;

• ro is defined in Equation (3.44).

ro =

{
1, if the image o is relevant

0, otherwise

(3.44)

The AP before and after applying the ranking framework is compared in different

scales to show the gain of the performance.

Results and Analyses

The AP of the baseline and the final ranking results by applying the proposed ranking

framework are demonstrated in Figure 3.19 to Figure 3.24. The AP are evaluated at the

first 10, 20, 30, 40, 50, 60, 80, 100, 150, 200, and all data instances. From these figures,

the improvement in AP made by the proposed ranking framework is clear, especially for

the first 10, 20 and 30 retrieved results. In Figure 3.19, the AP of the baseline is almost

0; while it can reach above 60% after ranking. The AP on the first 200 is still almost

20% better after the proposed ranking framework is applied. In Figure 3.22, the target
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concept “road” provides an AP of 60% for the first 10 retrieved results. It is even more

exciting to see that the AP on the first 10 is improved to be perfect after weighted rank-

ing using the correlation between “road” and “outdoor”. The same result is achieved on

the target concept “map”. After ranking using its correlation with “graphics”, the AP of

the first 10 retrieved data instances reaches 100%. Even for easy-to-retrieve concepts

like “sky”, the correlation with the reference concepts “outdoor” can further be used to

improve their retrieval performance.

In addition to the aforementioned promising results, it can also be observed that the

AP after the weighted ranking tends to get close to the baseline with an increased num-

ber of retrieved data instances. There are several aspects to interpret the phenomena.

First, the number of misclassified data instances increases when more data instances are

retrieved. The increase of misclassification will definitely compromise the retrieval per-

formance in terms of AP. Second, for some positive data instances with lower ranking

scores that are very easy to misclassify, the correlation in terms of the impact weights

does not help boost their rankings. This is reasonable since the attribute values of these

positive data instances may be either on the margin or deeply in the distribution area of

negative data instances.

In sum, a semantic concept retrieval framework is proposed with a new ranking

algorithm that considers not only the high co-occurrence relation between concepts (i.e.,

both concepts appear frequently), but also the low/none co-occurrence relation between

concepts (i.e., the appearance of one concept indicates a very small or zero chance of

the appearance of the other concept). This study is motivated by the ideas that (1) the

correlation among the concepts is useful and can be used to enhance the retrieval results;

and (2) the proposed ranking algorithm considers the inter-concept relationships in the

attribute level.
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Figure 3.19: Average precision of concept “entertainment” with or without reference

concept “people”

Figure 3.20: Average precision of concept “urban” with or without reference concept

“outdoor”
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Figure 3.21: Average precision of concept “sky” with or without reference concept

“outdoor”

Figure 3.22: Average precision of concept “road” with or without reference concept

“outdoor”
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Figure 3.23: Average precision of concept “map” with or without reference concept

“graphics”

Figure 3.24: Average precision of concept “snow” with or without reference concept

“outdoor”
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3.4.2 Semantic Concept Retrieval Using Inclusive and/or Exclusive Relationships

between Multiple Semantic Concepts

Two kinds of inter-concept relationships, namely the “inclusive” and “exclusive”

relationships, can be considered, as defined in the concept conditional probability (CCP)

(shown in Equation (3.45)). In an “inclusive” relationship, a reference concept C j is co-

occurred with a target concept Ci with a large chance (e.g., CCP is close to 1). On

the other hand, in an “exclusive” relationship, a reference concept C j hardly appears

together with a target concept Ci, where the CCP value is small or is equal to 0. Such

an inclusive (or exclusive) relationship reveals that the positive instances of the target

concept Ci (referring to the instances containing the target concept Ci) are supposed to

show a high probability to contain (or not to contain) the references concepts.

CCP(C j|Ci) =
# of instances belonging to both concepts Ci and C j

# of instances belonging to concept Ci
(3.45)

The proposed framework in chapter 3.4.1 uses only one reference concept and its

inclusive or exclusive inter-concept relationship to refine the retrieval performance of

the target concept. In this chapter, a new framework that considers more than one

reference concept and both the “inclusive” and “exclusive” inter-concept relationships

is proposed.

Generation of Co-occurrence Classes

A co-occurrence class refers to a class of the training instances which contain the target

concept and a subset of the concepts in the reference concept set. For a target concept

C0, the reference concept set RC is considering the following two relationships.

• Inclusive relationship: If CCP(C j|C0)> τ then RC← RC
⋃

C j

• Exclusive relationship: If CCP(C j|C0)< ε then RC← RC
⋃

C j, where j=1, · · · ,

# of concepts
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For example, there is a reference concept set RC = {C1,C2, . . . ,CK} with respect

to a target concept C0. In this example, C1 and CK hold an inclusive relationship with

C0 in that CCP(C1|C0) and CCP(CK|C0) are large. In the experiments, the inclusive

relationship is satisfied if the CCP value is larger than a threshold value (0.9 in this

study). C2 is the complementary concept of C2. An instance with C2 denotes that it

does not contain the concept C2. C2 is included in the reference concept as long as

CCP(C2|C0) is smaller than a threshold value (0.1 in this study). Please note that both

0.9 and 0.1 threshold values are determined empirically and can be adjusted if needed.

A co-occurrence class is composed of the target concept and any k-itemset (1 ≤ k

≤ K) generated from RC = {C1,C2, . . . ,CK}. In this study, a k-itemset is defined as a

subset with k reference concepts from RC. For example, {C1} is a 1-itemset, {C1,C2} is

a 2-itemset, and etc. Theoretically, a target concept and a reference concept set with K

concepts could generate as many as 2K itemsets. However, the actual number of item-

sets could be less because some concepts could be the subset of the others. For example,

the co-occurrence class generated by a target concept “road” with 1-itemset {outdoor}

is the same as the class generated by “road” with {indoor}. CODE 3.7 shows the way

to generate a unique set of co-occurrence classes from a reference concept set RC.
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CODE 3.7: GENERATION OF A UNIQUE SET OF CO-OCCURRENCE CLASSES

1 Input:

training labels of a target concept C0 and a reference concept set

RC={C1,C2,· · · ,CK}

2 Output:

a unique set of co-occurrence classes Ω

3 Ω← /0

4 FOR k=1 to # of concepts in RC

5 generate all k-itemsets from RC.

6 FOR each k-itemset

7 generate the co-occurrence class ω that contains C0

as well as the concepts in current k-itemset.

8 IF ω
⋂

Ω = /0 THEN

9 Ω = Ω
⋃

ω

10 END

11 END

12 END

Deriving Attribute-based Co-occurrence Relationships

For convenience, assume that Ωm is one of the co-occurrence classes generated in Chap-

ter 3.4.1. The training instances which belong to Ωm are labeled with the positive class

(Pm), while the rest of the training data instances are labeled with the negative class

(Nm). In this dissertation, multiple correspondence analysis (MCA) is adopted to ana-

lyze such correlation between the attributes and the co-occurrence class. However, the
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Table 3.40: A discretized matrix for the co-occurrence class Ωm

Attribute 1 ... Attribute t ... Pm Nm

A2
1 ... A1

t ... 1 0

A1
1 ... A1

t ... 0 0

... ... ... ... ... ...

A2
1 ... A2

t ... 0 1

Table 3.41: An indicator matrix Im for the co-occurrence class Ωm

A1
1 A2

1 ... A1
t A2

t ... Pm Nm

0 1 ... 1 0 ... 1 0

1 0 ... 1 0 ... 0 0

... ... ... ... ... ... ... ...

0 1 ... 0 1 ... 0 1

attributes (like color histogram, wavelet texture, and so on) of the training instances

used in semantic information retrieval are mostly numeric. To apply MCA to describe

the relationship between the attributes and the co-occurrence class, a discretization step

is necessary to convert the values of the attributes from “numeric” to “nominal” be-

fore MCA is applied. Here, the minimum description length (MDL)-based supervised

discretization method is used to discretize the attributes of the training and the testing

instances into a number of feature-value pairs (referring to the partitions of all possible

values of an attribute) corresponding to the co-occurrence class.

Suppose that the MDL-based discretization method is applied to an attribute At ,

which creates a few partitions A1
t , A2

t , . . . , A
β
t , where t is the identifier of the attribute

(i.e., the tth attribute) and β is the number of partitions generated for attribute At . In

the study, each partition is called a feature-value pair. Particularly, Aα
t stands for the

α-th partition of attribute At . For convenience, a mapping table (M1) is generated to

link each feature-value pair with a partition interval within an attribute so that it is easy

to convert a testing instance with numeric attribute values into the nominal values (as

the one used in Chapter 3.4.1).
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Table 3.40 shows an example of the discretized training instances in the form of a

data matrix, where each row denotes a training instance and each column stands for an

attribute or a class. A training instance with Pm=1 (or Nm=0) means that it belongs to

the co-occurrence class Ωm, while Pm=0 (or Nm=1) indicates that the training instance

is irrelevant to the co-occurrence class. MCA converts the discretized matrix into an

indicator matrix for further analyses. Note that there is no information loss during such

a conversion. An example of the indicator of the co-occurrence class Ωm is shown in

Table 3.41. Following the conventional process of MCA, CODE 3.8 shows the proce-

dure to derive the impact weight of each feature-value pair towards the co-occurrence

class Ωm from the indicator matrix Im.
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CODE 3.8: DERIVING IMPACT WEIGHTS FROM AN INDICATOR MATRIX Im

1 Input:

an indicator matrix Im ∈ Rη×ν

2 Output:

impact weights W (A
j
i ,Ωm)

3 Generate Burt matrix Bm from Im using Equation (3.46).

4 Let gm be the grand total of Bm as shown in Equation (3.47).

Generate probability matrix Γm = Bm/gm.

5 Calculate Vm ∈ Rν×1, which are the column totals of Γm.

6 Derive diagonal matrix Dm by applying Equation (3.48) to Vm.

7 Generate a centralized matrix Zm using Equation (3.49).

8 Apply eigen value decomposition (see Equation (3.50)) on Zm to

derive its eigenvectors Qm={q
(m)
1 , q

(m)
2 ,...,q

(m)
η } in a descending

order of the corresponding eigenvalues.

9 Project Zm as (Xm, Ym) on the subspace spanned by q
(m)
1

and q
(m)
2 , as shown in Equation (3.51).

10 Derive impact weights W (A
j
i , Ωm) for each feature-value

pair A
j
i on class Ωm using Equation (3.52).

11 Output impact weights W (A
j
i , Ωm) for A

j
i on Ωm.

As shown in CODE 3.8, given the indicator matrix Im (Line 1), let IT
m be the trans-

pose of the matrix Im, and then the Burt matrix Bm can be calculated from IT
m and Im

using Equation (3.46) in Line 3. Let bi j be the element at the i-th row and the j-th

column of the matrix Bm, and gm be the grand total of Bm as shown in Equation (3.47),
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Lines 4 and 5 generate the probability matrix Γm and Vm which are the column totals of

Γm. In Line 6, the diagonal matrix Dm for Vm can be generated by applying Equation

(3.48) to Vm.

Bm = IT
mIm. (3.46)

gm =
ν

∑
i=1

ν

∑
j=1

bi j. (3.47)

D = DIAG(Θ), (3.48)

where Θ = {θ1,θ2, ...,θÑ
}T is an Ñ × 1 vector and each element di j in D satisfies:

di j =





θi if i = j;

0 otherwise.

In Line 7, a centralized matrix Zm is constructed using Equation (3.49). Then, Zm is

utilized to construct the eigenvalues and eigenvectors, and select the subspace spanned

by the first two principal components (Lines 8 and 9). Assume that XΩm
and YΩm

are the

corresponding projection of the co-occurrence class Ωm on q
(m)
1 and q

(m)
2 , and similarly,

X
A

j
i

and Y
A

j
i

are the corresponding projection of a feature-value pair A
j
i on q

(m)
1 and q

(m)
2 .

Lines 10 and 11 derive the impact weights using Equation (3.52) as the output.

Zm = D
− 1

2
m (Γm−VmV T

m )(DT
m)
− 1

2 . (3.49)

Zm = QmΛQ−1
m . (3.50)

(Xm,Ym) = Zm ∗ (q
(m)
1 ,q

(m)
2 ). (3.51)

W (A j
i ,Ωm) =

(XΩm
,YΩm

)T · (X
A

j
i

,Y
A

j
i

)

|(XΩm
,YΩm

)| · |(X
A

j
i

,Y
A

j
i

)|
. (3.52)
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The Proposed Ranking Algorithm

The proposed ranking algorithm consists of two phases: a learning phase and a ranking

phase. In the learning phase, one of the co-occurrence classes is selected with the

highest retrieval performance in term of average precision (as defined in Equation (3.43)

in Chapter 3.4.1). A mapping table (M1) is constructed to convert the numeric attributes

into nominal attributes (see Table 3.42 for example) and afterwards a correlation table

(M2) will be generated to store the impact weights between each feature-value pair and

the selected co-occurrence class (see Table 3.43 for example). The detailed procedure

of the learning phase is shown in CODE 3.9.

Table 3.42: An example mapping table M1

Feature-value pair Partition range

A1
1 (-∞, -0.2]

A2
1 (-0.2, 2.6]

... ...

A1
i (-∞, -9.4]

... ...

A
j
i (-5.1, -3]

... ...

Table 3.43: An example correlation table M2 with respect to the selected co-occurrence

class Ωm

Feature-value pair impact weight

A1
1 W (A1

1,Ωm)

A2
1 W (A2

1,Ωm)
... ...

A1
i W (A1

i ,Ωm)
... ...

A
j
i W (A

j
i ,Ωm)

... ...
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CODE 3.9: LEARNING PHASE

1 Input:

Training data instances in Tr with labels, and a set of co-occurrence classes Ω

2 Output:

The selected co-occurrence class Ωo, mapping table M1,

and correlation table M2

3 SET AP=0, Ωo=/0, M1=/0, M2=/0.

4 FOR each co-occurrence class Ωi in Ω

5 Apply a supervised discretization method to discretize

the numeric training data into discretized data ∏(i).

Create a mapping table M1(i) to store the generated

feature-value pairs and their corresponding ranges of partitions.

6 Apply MCA on ∏(i) to generate a correlation table M2(i)

to store the impact weights between feature-value pairs and

Ω(i) by following the procedure of CODE 3.8.

7 FOR each instance Tr[u] in Tr

8 Get all feature-value pairs and their impact weights to Ωi.

9 The ranking weight Score(i)(Tr[u])← the average value

of all related impact weights.

10 END

11 Calculate the average precision AP(i) on Score(i)(Tr), which is

composed of all Score(i)(Tr[u]).

12 IF AP(i) > AP THEN

UPDATE AP=AP(i), Ωo=Ωi, M1=M1(i), M2=M2(i).

13 END

14 END

15 Output Ωo, Table M1, and Table M2.

In CODE 3.9, AP, Ωo, M1 and M2 are initialized (Line 3). The learning phase iter-

atively selects one co-occurrence class Ωi from Ω (Line 4) and discretizes the training
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data instances in Tr to ∏(i) by a MDL-based supervised discretization method. The

mapping between discretization intervals and the feature-value pairs are stored in M1(i)

(Line 5). Next, MCA is employed to derive the impact weights between each feature-

value pair and Ω(i), which are stored in Table M2(i) (Line 6). For each training data

instance Tr[u], the corresponding feature-value pairs and their impact weights to Ωi can

be retrieved by looking up Table M1(i) and M2(i) (Line 8), and the average value of the

impact weights serves as the ranking weight for Tr[u] (Line 9). In Line 11, an average

precision value AP(i) with respect to the co-occurrence class Ω(i) is derived from the

ranking weights of Tr and is compared with the predefined AP value. If AP(i) is larger

than AP, which means Ω(i) is able to render a better performance than the previous co-

occurrence classes, AP, Ωo, M1, and M2 are therefore needed to be updated (in Lines

12 and 13). After the AP values of all co-occurrence classes have been evaluated, the

optimal co-occurrence class with the best AP will be the output from the training phase

(in Line 15).

Figure 3.25: Detailed procedure of the ranking phase
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In the ranking phase, the selected co-occurrence class Ωo, together with the M1 and

M2 tables created from the learning phase are used to generate the final ranking scores

from the score of the stand-alone model by considering the correlation between the

corresponding feature-value pairs and Ωo. Each testing data instance (T s) is described

by a vector of attributes, followed by looking up mapping table M1 and correlation

table M2 to get the impact weights for each attribute. Then, similar to the generation of

Score(i)(Tr) in CODE 3.9, the impact weights are averaged to form the ranking weights

to obtain the final ranking scores (see Figure 3.25 and CODE 3.10 for details).

CODE 3.10: RANKING PHASE

1 Input:

Testing data instance T s, the selected co-occurrence class Ωo,

mapping table M1, and correlation table M2.

2 Output:

ranking score ReS

3 Get RS(Ts,ϕt), the ranking score of T s from stand-alone

ranking model ϕt for a target concept.

4 Look up mapping table M1 and find the feature-value

pairs for each testing data instance T s.

5 Look up correlation table M2 and find the corresponding

impact weights.

6 Calculate the average value W of the impact weights and use

W as the ranking weight for T s.

7 Calculate ReS, the ranking score of T s with respect to the

target concept by using ReS=RS(T s,ϕt)·(1+W ).

8 Output the ranking Score ReS.

Given a ranking score RS(Ts,ϕt) for the testing data instance T s from a stand-alone

ranking model (in Line 3), CODE 3.10 aims to generate a ranking score ReS. After



www.manaraa.com

119

looking up the related feature-value pairs (in Line 4) and impact weights (in Line 5) of

T s from Tables M1 and M2, the ranking weight W is chosen to be the average value of

the impact weights (in Line 6). In Line 7, the final ranking score is derived by using

ReS=RS(T s,ϕt)·(1+W ), which is the output of this ranking phase (Line 8).

Experimental Results and Analyses

To evaluate the effectiveness of the proposed ranking algorithm in the proposed seman-

tic concept retrieval framework, several experiments are conducted on two different

datasets. The experimental setup is introduced in Experimental Setup and the results

are demonstrated and discussed in Chapter Results and Analyses.

Experimental Setup

Two datasets, namely the MediaMill Challenge Data Set [4] (TRECVID2005 news

and broadcast videos) and TRECVID2011 video collections [42] are used in the exper-

iments.

The MediaMill Challenge Data Set contains 101 semantic concepts and the dataset

has been split in advance by the provider into a training set (30,993 data instances)

and a testing set (12,914 data instances). There are 5 different experiments within the

dataset, and the features, models, and ranking scores provided in the experiment 1 are

used. The performance is selected based on the provided ranking scores as the baseline.

In the TRECVID2011 video collections, 361 dimensional low-level visual features

(including color dominant, color histogram, edge histogram, wavelet texture, and etc.)

are extracted from each keyframe The whole dataset is split into a training data set

(118,581 data instances from IACC.1.tv10.training video sets) and a testing data set

(144,774 data instances from IACC.1.A video sets). There are a total of 346 concepts

but only the first 130 concepts used by TRECVID2010 are used since the rest of the

concepts are not guaranteed to have a positive class in the training set.
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Table 3.44: Target concepts and their corresponding datasets

Group ID Target Concept Source

1 people MediaMill Challenge Data Set

2 sky MediaMill Challenge Data Set

3 violence MediaMill Challenge Data Set

4 anchor MediaMill Challenge Data Set

5 people marching MediaMill Challenge Data Set

6 maps MediaMill Challenge Data Set

7 splitscreen MediaMill Challenge Data Set

8 football MediaMill Challenge Data Set

9 nightfire MediaMill Challenge Data Set

10 racing MediaMill Challenge Data Set

11 car TRECVID2011 Video Collections

12 daytime outdoor TRECVID2011 Video Collections

13 ground vehicle TRECVID2011 Video Collections

14 indoor TRECVID2011 Video Collections

15 landscape TRECVID2011 Video Collections

16 male person TRECVID2011 Video Collections

17 person TRECVID2011 Video Collections

18 reporter TRECVID2011 Video Collections

19 road TRECVID2011 Video Collections

20 single person TRECVID2011 Video Collections

The subspace models proposed in [115] are used to generate the ranking scores

for the testing data instances concept-by-concept and the performance of these ranking

scores are used as a baseline in the experiments. The average precision is used to

measure the retrieval performance of the baseline and the proposed ranking algorithm.

For each target concept, the parameters τ and ε involved in generating the reference

concept set are chosen to be 0.9 and 0.1, respectively. The target concepts evaluated in

the experiments are shown in Table 3.44.

Results and Analyses

Table 3.45 shows the selected co-occurrence classes of all the 20 target concepts

output from the learning phase. The AP values of the ranked results using the proposed

re-raking algorithm in comparison with the baseline are displayed from Figure 3.26(a)
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to Figure 3.30(d). In each figure, the evaluation performance of the AP values for

the first 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200, and all data instances are

plotted for the baseline and the proposed ranking algorithm. The proposed algorithm

outperforms the baseline in all figures.

Figure 3.26(a) gives the average precision (AP) values of Group 1 - the concept

“people” only (dash line) and “people” without the concept “male” (solid line). In

Figure 3.26(b), the AP values of Group 2 - the concept “sky” only (dash line) and “sky”

with the concept “outdoor” (solid line) are presented. Figure 3.26(c) shows the AP

values of Group 3 - the concept “violence” only (dash line) and “violence” without the

concept “government leader” (solid line). In Figure 3.26(d), the AP values of Group 4

- the concept “anchor” only (dash line) and “anchor” without the concepts “outdoor”,

“entertainment”, “crowd”, “walking running”, and “government leader” (solid line) are

given.

The AP values of Group 5 are shown in Figure 3.27(a) - the concept “people marching”

only (dash line) and ‘people marching” without the concepts “entertainment”, “crowd”,

“government leader”, and “vehicle” (solid line). In Figure 3.27(b), the AP of Group 6 -

the concept “maps” only (dash line) and “maps” without the concepts “outdoor”, “walk-

ing”, “running”, “crowd”, and “government leader” (solid line). Figure 3.27(c) gives

the AP values of group 7 - the concept “splitscreen” only (dash line) and ‘splitscreen”

without the concepts “outdoor”, “entertainment”, “crowd”, and “government leader”

(solid line) are presented. The AP values of Group 8 - the concept “football” only (dash

line) and “football” without the concepts “indoor” and “urban” (solid line) are shown

in Figure 3.27(d).

Figure 3.28(a) presents the AP values of Group 9 - the concept “nightfire” only

(dash line) and ‘nightfire” without the concepts “entertainment”, “indoor”, “crowd”,
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Table 3.45: Target concepts and the selected co-occurrence class in the corresponding

datasets from the learning phase

Group ID Target Concept the Selected Co-occurrence Class

1 people {people,male}
2 sky {sky, outdoor}

3 violence {violence, government leader}

4 anchor {anchor, outdoor, entertainment, crowd,

walking running, government leader}

5 people marching {people marching, entertainment, crowd,

government leader, vehicle }

6 maps {maps, outdoor, walking, running,

crowd, government leader}

7 splitscreen {splitscreen, outdoor, entertainment, crowd,

government leader}

8 f ootball { f ootball, indoor, urban}

9 night f ire {night f ire, entertainment, indoor,

crowd, government leader, road}

10 racing {racing, government leader}

11 car {car, f ace}

12 daytime outdoor {daytime outdoor, vehicle}

13 ground vehicle {ground vehicle,actor, f ace, indoor,

male person}

14 indoor {indoor, outdoor}

15 landscape {landscape, actor, f ace, indoor}
16 male person {male person, actor}
17 person {person, actor}
18 reporter {reporter, actor}

19 road {road, adult, indoor}

20 single person {single person, outdoor}
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(a) AP values for Group 1 (b) AP values for Group 2

(c) AP values for Group 3 (d) AP values for Group 4

Figure 3.26: Average precision values of Groups 1 to 4
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(a) AP values of Group 5 (b) AP values of Group 6

(c) AP values of Group 7 (d) AP values of Group 8

Figure 3.27: Average precision values of Groups 5 to 8
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(a) AP values of Group 9 (b) AP values of Group 10

(c) AP values of Group 11 (d) AP values of Group 12

Figure 3.28: Average precision values of Groups 9 to 12

“government leader”, and “road” (solid line). The AP values of Group 10 - the concept

“racing” only (dash line) and “racing” without the concept “government leader” (solid

line) are shown in Figure 3.28(b). In Figure 3.28(c), the AP values of Group 11 are given

- the concept “car” only (dash line) and “car” without the concept “face” (solid line).

Figure 3.28(d) then displays the AP values of Group 12 - the concept “daytime outdoor”

only (dash line) and “daytime outdoor” without the concept “vehicle” (solid line).

In Figure 3.29(a), the AP values of Group 13 are demonstrated - the concept “ground

vehicle” only (dash line) and ‘ground vehicle” without the concepts “actor”, “face”,
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(a) AP values of Group 13 (b) AP values of Group 14

(c) AP values of Group 15 (d) AP values of Group 16

Figure 3.29: Average precision values of Groups 13 to 16

“indoor”, and “male person” (solid line). The AP values of Group 14 are shown in Fig-

ure 3.29(b) for the concept “indoor” only (dash line) and “indoor” without the concept

“outdoor” (solid line). Figure 3.29(c) gives the AP values of Group 15 - the concept

“landscape” only (dash line) and “landscape” without the concepts “actor”, “face”, and

“indoor” (solid line). The AP values of Group 16 for the concept “male person” only

(dash line) and “male person” without the concept “actor” (solid line) are presented in

Figure 3.29(d).

The AP values of Group 17 with the concept “person” only (dash line) and “person”

without the concept “actor” (solid line) are displayed in Figure 3.30(a). Figure 3.30(b)
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(a) AP values of Group 17 (b) AP values of Group 18

(c) AP values of Group 19 (d) AP values of Group 20

Figure 3.30: Average precision values of Groups 17 to 20

shows the AP values of Group 18 - the concept “reporter” only (dash line) and “re-

porter” without the concept “actor” (solid line). In Figure 3.30(c), the AP values of

Group 19 - the concept “road” only (dash line) and “road” without the concepts “adult”

and “indoor” (solid line) are given. The AP values of Group 20 are presented in Fig-

ure 3.30(d) for the concept “single person” only (dash line) and “single person” without

the concept “outdoor” (solid line).

The AP values of concepts in Group 1 to Group 20 show that the proposed semantic

concept retrieval framework with the help of the proposed ranking algorithm is able to
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return more relevant retrieved results to the users when compared to the results retrieved

by the baseline. For example, in Figure 3.26(a), the AP values of the ranked results are

almost 30% better at the retrieval depths of 10 to 40 than those of the baseline. Even at

the retrieval depth of 200, the AP value of ranked result is still 20% better than that of

the baseline. As shown in Figure 3.26(c) and Figure 3.27(b), the AP value for the top 10

is almost 40% better than that of the baseline, returning the end users with significantly

more relevant results. Considering the fact that the users are most interested in the first

few retrieved results, the ranked results are able to better meet the needs of the users.

The benefits of applying the proposed ranking algorithm are outstanding in two as-

pects: (1) for those target concepts that are not so difficult to be retrieved correctly,

the proposed ranking algorithm could further improve their retrieval performance, even

to be perfect at some retrieval depths (as can be seen from Figure 3.26(d) and Fig-

ure 3.29(b)); and (2) the proposed ranking algorithm is able to retrieve the relevant

instances to a target concept even if the baseline cannot detect any relevant instances at

some depths. For example, the AP value at the first 10 for the target concept “Land-

scape” in Figure 3.29(c) is 0 in the baseline, but the AP value at the first 10 for the

proposed framework with the ranking algorithm can reach about 14%.

In addition to the aforementioned promising results, it is also noticeable that the

AP values between the ranking method and the baseline get closer as the number of

retrieved data instances increases. The phenomena can be explained from two sides.

First, with the increase of the retrieved instances, the number of misclassified data in-

stances becomes larger and larger, compromising the retrieval performance in terms

of AP. Second, the correlation in terms of the impact weights might not help much to

boost the ranking positions of some misclassified instances with a lower rank since the

attribute values of these positive data instances may be either on the margin or deeply in
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the distribution area of the negative data instances, resulting in the difficulty to retrieve

them from a group of negative data instances.

Finally, with regard to time complexity issue, the time complexity of the proposed

ranking strategy, as well as the the one mentioned in Chapter 3.4.1 is estimated to be

around O(ζ 3) for the training step, where ζ is the number of the generated feature-value

pairs. Such time complexity is O(1) for the testing step.
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A Prototype of a Web-based Semantic Concept

Retrieval System

In this chapter, a detailed design and implementation of the prototype of a web-

based semantic concept retrieval system is elaborated. Chapter 4.1 briefly introduces

the overall design of the prototype. Chapter 4.2, Chapter 4.3, and Chapter 4.4 illustrate

and discuss the design and implementation of the database layer, user interface, and

application layer, respectively.

4.1 Overall Design

The overall design follows the typical framework of Apache Struts [116]. Apache Struts

is a very popular open-source framework for developing Java EE (Java Platform, En-

terprise Edition) web applications. The idea of struts is originated from the model-

view-controller (MVC) design pattern, where the model (the component interacting

with a database) is separated by the view (such as JavaServer Pages (JSP)) and con-

nected by a controller (a servlet called ActionServlet). As can be seen from Figure

4.1, it consists of three important components, namely the database layer, application

layer, and user interface. The whole framework must be deployed on a web server such

as Apache Tomcat [117] before it takes effect. The user interface receives users’ re-

quests and sends them to the application layer. Usually, JSP are used to dynamically

generate web pages to receive users’ submitted requests and/or display the results to

130
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end users. The data related to users’ requests are stored in different “Forms”. In ap-

plication layer, the “ActionServlet” (serving as the controller) receives the requests and

dispatches each request towards a corresponding action according to the configuration

information stored in “struts-config.xml”. An ”Action” fulfills the requests received by

the “ActionServlet”, which might include saving users’ input data into a database or

retrieving desired information from a database. In the database layer, features extracted

from images and concept labels are stored in corresponding tables within the database.

The following sections will describe each component in details.

Figure 4.1: A typical framework of Struts

4.2 Database Layer Design

The database layer stores the information related with images and their corresponding

semantic concepts. The entities involved in the database of semantic concept retrieval

and their corresponding explanation are shown as follows.

• images: the entity “images” is used to store the information related to each image,

such as images’ names and IDs.

• concepts: the entity “concepts” stores the names and explanation about the se-

mantic concepts.
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Table 4.1: Relationships between all entities

Entity Entity Relationship

images features one-to-one

images concepts many-to-many

concepts models one-to-one

• features: the entity “features” contains a number of low-level features that are

extracted from images.

• models: the entity “models” is created to store the training models that are related

to semantic concepts.

The relationships between all these entities are shown in Table 4.1. One image is

only allowed to have no more than one set of features (349 dimensions in the current

case). For each image, it may contain more than one concept. For example, an image

describing an urban area may contain semantic concepts such as “sky”, “car”, “build-

ing”, and etc. Besides, a certain concept could appear in multiple images. Thus, there is

a “many-to-many” relationship between “images” and “concepts”. Finally, one training

model will be created per concept and the characteristic of the training model is going

to be described by the entity “models”.

During the implementation step, one table is created for each entity. Figure 4.2

shows the final design of the entity-relationship diagram. As can be seen from this

figure, the “many-to-many” relationship between entity “images” and “concepts” now

involves three tables, namely “images”, “concepts”, and “imagesconcepts” and is sim-

plified to two “many-to-one” relationships. Such a simplification makes it easy to store

the label information between the images and concepts. However, as will be seen later,

such a simplification will create a lot of redundancy and sacrifice the efficiency of se-

mantic concept retrieval. The detailed design about each table in Figure 4.2 is shown

from Table 4.2 to Table 4.6. The table “models” stores the data involved in the training
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Table 4.2: Design of Table “images”

Attribute Type Primary Key Not Null

ImageID INTEGER Yes Yes

ImageName VARCHAR(20) No Yes

Table 4.3: Design of Table “concepts”

Attribute Type Primary Key Not Null

CID INTEGER Yes Yes

ConceptName VARCHAR(20) No Yes

models of subspace classifiers. Specifically speaking, the stored models are the ob-

jects containing the output from training phase of subspace modeling (see CODE 3.2

of Chapter 3.3.2 for details), including the eigenvalues and corresponding eigenvectors,

and more.

One thing needs to be mentioned here is that such a design of database ensures the

consistency of the data stored in the database. However, when extracting features from

the database and applying the subspace classifier, it may involved a number of “join”

operation between different tables. For example, the creation of input of the subspace

classifier (training data and their corresponding training labels) requires the “join” oper-

ations between Table “images”, Table “concepts”, and Table “imagesconcepts”. Due to

the huge number of images in real applications, such a “join” operation results in a slow

response time or an intolerable training time. Therefore, a temporary table is generated

to store the label information of each image to improve the efficiency of data retrieval

Table 4.4: Design of Table “features”

Attribute Type Primary Key Not Null

ImageID INTEGER Yes Yes

A 1 Double No No

A 2 Double No No

. . . . . . . . . . . .

A 349 Double No No
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Table 4.5: Design of Table “models”

Attribute Type Primary Key Not Null

ImageID INTEGER Yes Yes

Model pos BLOB No No

Model neg BLOB No No

Table 4.6: Design of Table “imagesconcepts”

Attribute Type Primary Key Not Null

ImageID INTEGER Yes Yes

CID INTEGER Yes Yes

label CHAR No No

Figure 4.2: Entity-relationship diagram
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Table 4.7: Design of Table “imagelabels”

Attribute Type Primary Key Not Null

ImageID INTEGER Yes Yes

Concept 1 CHAR No Yes

Concept 2 CHAR No Yes

. . . . . . . . . . . .

Concept 24 CHAR No Yes

for training or testing. The temporary table can be created either by joining three tables

- “images”, “concepts”, and “imagesconcepts” or by directly importing from outer files

with images’ IDs and concept labels. Table 4.7 shows an example of the temporary ta-

ble “imagelabels”, where all 24 concept labels in the MIRFLICKR25K image datasets

are saved in different columns. For the complete list of these concepts, please refer to

Table 4.8.

4.3 User Interface Design

Figure 4.3: Home page of concept retrieval prototype

User interface is the front end of the concept retrieval prototype. The role of the user

interface is to interact with users, such as taking requests from users and responding



www.manaraa.com

136

Figure 4.4: Retrieval results of concept “plant life”

to users with the returned results. In the prototype, JSP serve as the web interface

where users can select a certain semantic concept of interest to retrieve or view the

returned images related to the query concepts. Figure 4.3 shows the snapshot of the

homepage of the semantic concept retrieval prototype. And Figure 4.4 displays the first

16 images returned by the prototype that are related to the query concept “plant life”.

The MIRFLICKR25K dataset contains 24 unique semantic concepts, which are listed in

Table 4.8. In the user interface, a user can issue a semantic concept query by selecting

one of the 24 concepts (such as “plant life”) listed in the ”drop down box”, which

are indicated by the words “Please select a concept” (see Figure 4.3). The prototype

receives the query request issued by the user and responds with a list of returned images

that are predicted to contain the target concept (such as “Plant Life”) identified by the

user (see Figure 4.4). The JSP codes related to the capture of the users’ selection results

with regard to their semantic concepts are shown as follows. As will be seen later, the

application later will handle users’ requests to retrieve their interested concepts.
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CODE 4.1: JSP CODE OF SEMANTIC CONCEPT SELECTION

<html:form action=”/retrievalConcept”>

<html:select property=”concept” size=”1”>

<html:option value=”0”>Please select a concept</html:option>

<html:option value=”1”>sky</html:option>

<html:option value=”2”>water</html:option>

. . .

<html:option value=”24”>car</html:option>

</html:select>

<html:submit/>

</html:form>

4.4 Application Layer Design

The aforementioned database layer and user interface can be regarded as back end and

front end respectively. Such a separation between the user interface and database layer

can simplify the design of the prototype by considering the front end and back end as

two independent modules. In addition to this advantage, the maintenance of each inde-

pendent module is much easier than that of the whole prototype. The application layer

serves as the bridge to connect the user interface and the database layer. In the appli-

cation layer, there is one controller and the corresponding “Actions” classes to handle

the requests received through user interface. The controller dispatches a user’s request

to a corresponding “Action” class by looking up the action mappings in the “struts-

config.xml”. An example of the action mapping configuration is shown in CODE 4.2.
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Table 4.8: All 24 concepts and their IDs in MIRFLICKR25K dataset

Concept ID Concept Name

1 sky

2 water

3 portrait

4 night

5 female

6 sunset

7 clouds

8 flower

9 indoor

10 male

11 plant life

12 dog

13 structures

14 transport

15 tree

16 people

17 animal

18 sea

19 baby

20 river

21 lake

22 food

23 bird

24 car
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CODE 4.2: ACTION-MAPPING CONFIGURATION

<action-mappings >

<action

attribute=”retrievalConceptForm”

input=”/form/retrievalConcept.jsp”

name=”retrievalConceptForm”

path=”/retrievalConcept”

scope=”request”

type=”edu.miami.ddm.action.RetrievalConceptAction”>

<set-property property=”cancellable” value=”true” />

<forward name=”success” path=”/form/retrievalConcept.jsp” />

</action>

</action-mappings>

The role of the “Action” classes is to fulfill the request made by the users. In se-

mantic concept retrieval, this request can be detailed into a serious of processes, such as

retrieving features from database, calling subspace classifiers to get ranking scores and

returning the ranked image list to the user interface. The example code of the “Action”

class fulfilling the semantic concept retrieval task is shown in the following codes.
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CODE 4.3: ACTION CODE TO PERFORM SEMANTIC CONCEPT RETRIEVAL

public ActionForward execute(ActionMapping mapping, ActionForm form,

HttpServletRequest request, HttpServletResponse response) {

RetrievalConceptForm retrievalConceptForm = (RetrievalConceptForm) form;

// step 1: get the concept ID from input forms

String conceptValue=retrievalConceptForm.getConcept(); . . .

// step 2: get subspace models from database

ArrayList listFromDatabase = (ArrayList) a2d.readJavaObject(conceptID);

TPCC Model tpm pos=(TPCC Model) listFromDatabase.get(0);

Trecvid PCC tpcc pos rec=a2d.getTrecvid PCCFromMode(tpm pos);

TpCC Model tpm neg=(TPCC Model) listFromDatabase.get(1);

Trecvid PCC tpcc neg rec=a2d.getTrecvid PCCFromMode(tpm neg);

. . .

// step 3:classify the testing instance and get the ranks

Trecvid SMC smc rec=new Trecvid SMC();

smc rec.classify(tpcc pos rec, tpcc neg rec, testData);

. . .

}

From the perspective of functionality, all the classes in the application layer fall into

three categories: independent, front end-related, and back end-related. The front end-

related classes deal with the interaction between the user interface and the application

layer. To be specific, these classes get the input from the user interface and returns

the user interface with corresponding results. For example, “ActionForms” classes are

created to store the data input by users. The “ActionForms” classes are built in struts
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framework. The main goal of these “ActionForm” classes is to use a standard data

structure that are recognized by struts to pass parameters between the front end to the

different “Actions”, where the requests issued by the users are actually handled. These

“ActionForms” classes allow some validation mechanisms but the most prevailing vali-

dation mechanism tends to perform at the user interface side to reduce the response time

and improve users’ experiences. The following codes display a simple “ActionForm”

class used in step 1 of CODE 4.3.

CODE 4.4: ACTIONFORM TO RETRIEVE THE INPUT CONCEPT

public class RetrievalConceptForm extends ActionForm {

private String concept;

public String getConcept() {

return concept;

}

public void setConcept(String concept) {

this.concept = concept;

}

}

The back end-related classes interact with the database layer, managing the input

and output operation from the database. In the step 2 of the “Action” code, Java

Database Connectivity (JDBC) is utilized to access the database, which provides an

API for the Java programming language to query and update the database. SQL queries

are embedded in the Java codes and the data within the database are returned as Java

Objects. The following codes show the way to retrieve the subspace models saved in

the format of BLOB in MySQL database and the preparation of testing data from the

features and labels stored in the database.
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CODE 4.5: JAVA CODES TO RETRIEVE MODEL FROM THE DATABASE

ResultSet rs = pstmt.executeQuery();

byte[] buf = rs.getBytes(1);

ObjectInputStream objectIn = null;

if (buf != null)

objectIn = new ObjectInputStream(new ByteArrayInputStream(buf));

Object posModel = objectIn.readObject();

CODE 4.6: CREATE TESTING DATA FROM THE DATABASE

InstanceQuery query;

Instances data=null;

try {

query=new InstanceQuery();

. . .

String queryStr=“SELECT f.* , concept ”+conceptID+

“ FROM features f, labels l WHERE f.ImageID=l.ImageID AND ”;

. . .

query.setQuery(queryStr);

data=query.retrieveInstances(); //retrieve instances from database

. . .

} catch (Exception e) {

. . .

}



www.manaraa.com

143

The independent classes in the application layer mainly refer to those classes that are

not directly related to either the user interface or the database layer, such as the classes

related to the subspace classifier, which takes the feature of the instances object (a class

recognized by “WEKA” [112]) prepared by the back-end related classes and outputs the

ranking scores of each testing image. Some independent classes are from third parties,

such as “WEKA”. The class mentioned in step 3 of CODE 4.3 (Trecvid SMC) is a

typical representative of the independent classes.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

Multimedia information retrieval is currently a popular research area. However, there

are three challenges that should be addressed: bridging the semantic gap, handling the

data imbalance, and achieving effective semantic concept detection and retrieval. In

this dissertation, these three challenges are addressed by utilizing a subspace modeling-

based framework with the help of inter-concept relationships. Novel classification

methods are proposed to address the semantic gap issue, which are a multi-class super-

vised classification method called multi-class subspace modeling (MSM) and a binary-

class supervised classification method called binary-class subspace modeling (BSM).

Based on MSM and BSM, another framework called subspace modeling using the

global and local structures (SMGL) is proposed, which not only considers the global

dissimilarity as MSM and BSM do, but also takes account of the local similarity hidden

in feature-value pairs. Comparative experiments with various well-known supervised

classification methods on UCI data sets and TRECVID data sets have demonstrated that

MSM stably maintains the highest accuracy rate on all data sets with multiple classes.

BSM and SMGL are evaluated on the TRECVID benchmark data sets and they have

144
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shown very promising experimental results to detect the high-level semantic concepts

within the video shots.

For the challenge of the data imbalance issue, a new clustering-based binary-class

subspace modeling classification framework called CLU-SUMO is proposed. The pro-

posed framework utilizes the K-means clustering method to cluster the negative training

data set into K different negative groups. Then each negative group is combined with the

positive training data to construct K new balanced data groups on which subspace mod-

els are trained. The CLU-SUMO framework is demonstrated to be effective according

to comparative experiments with other well-known classification algorithms. To im-

prove further the efficiency of CLU-SUMO and assign semantic meanings to each bal-

anced data group, a new framework called class selection and clustering-based subspace

modeling (CSC-SUMO) is proposed. CSC-SUMO utilizes both the non-target class se-

lection and the K-means clustering method to divide the negative training subset into

L+K different negative groups. L negative groups are from non-target class selection

and K negative groups are from K-means clustering. Each negative group is combined

with the positive training subset to construct L+K new balanced data groups, each of

which is trained using a subspace modeling method. From the experimental results,

the proposed CSC-SUMO framework shows its effectiveness by producing competitive

results against the other well-known learning methods for imbalanced data sets.

For the last challenge, a new ranking framework that utilizes the co-occurrence rela-

tionships between two semantic concepts is proposed. The proposed framework creates

two co-occurrence classes (PP and N) based on a target concept and its reference con-

cept. The co-occurrence class PP is composed of the training instances belonging to

both the target and the reference classes, while the co-occurrence class N is formed by

the rest of the training instances. A supervised discretization step converts the numeric
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input data into feature-value pairs and generates a discretization table that maps each

feature-value pair with a partition interval. Next, MCA is utilized to generate the cor-

relation tables of the feature-value pairs and the co-occurrence PP from the discretized

training data instances. The correlation table and the discretization table generated dur-

ing discretization step are looked up for testing data instances to get the impact weights

and final ranking weights. Finally, the scores from the learning model are ranked by

multiplying the ranking scores with the summation of the impact weights. Experi-

mental results show that the proposed ranking framework has promising improvements

on the average precision values in semantic concept retrieval, especially for the first

10, 20 and 30 retrieved results. To reduce the interference of domain knowledge in

selecting the reference concept, and also to consider both the “inclusive” and the “ex-

clusive” relationships between the target concept and the reference concepts, another

ranking framework is proposed, which aims to find the best co-occurrence class from

the combinations of the target concept and reference concepts to rank the retrieval re-

sults. Experimental results reveal its merits to improve the mean average precision on

the retrieval results at different retrieval depths.

5.2 Future Work

Due to several limitations of the proposed frameworks and to explore new directions,

several future works will be explored as follows.

5.2.1 Fusion of the Content-based and the Context-based Semantic Concept Re-

trieval Models

In semantic concept retrieval, there are two categories of models: content-based models

and context-based models. The content-based models are built directly on the low-level

features extracted from the images or videos and suffer from the “semantic gap” is-

sue. The context-based models are built from the context information attached with
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the videos, such as captions, meta data, tag, and etc, which avoids the semantic gap

issue but this context information is often incomplete and noisy. The content-based

and the context-based models contain information supplementary to each other and it is

interesting to integrate them to get better performance than each model alone. To inte-

grate the content-based and context-based information, most of the existing approaches

adopted the late fusion method to combine the results from several models trained by

visual and context features. The straightforward fusion method is to apply the product,

minimum, maximum, average, or median rule, which can be considered as the special

case of a generic fusion model. Suppose there are M models that produce the posterior

probability Pm(w|xn) as ranking score, where w is the target concept and xn stands for

the nth instance. The generic model is shown in Equation (5.1).

P(w|xn) =
M

∑
m=1

ϕn(xn) ·Pm(w|xn). (5.1)

The average rule is where ϕn(xn)=1/M. For the maximum rule, ϕn(xn) is shown in

Equation (5.2), where M
′
is the number of models whose Pm(w|xn)=maxm=1,...,M Pm(w|xn).

ϕn(xn) =

{
1

M
′ , i f Pm(w|xn) = maxm=1,...,M Pm(w|xn)

0, otherwise

(5.2)

Fusion rules like minimum and median can also be written in a similar manner. The

majority voting rule is only applicable when the class label is available. The “product”

rule, though a little bit complicated, is still able to be represented by such a generic

model in which ϕn(xn) is shown in Equation (5.3).

ϕn(xn) =
1

M
∏

ν=1...M,ν 6=m

Pm(w|xn). (5.3)

The purpose of model fusion is trying to achieve performance gains from all the

individual models. In the proposed fusion strategy, the form of the generic model is



www.manaraa.com

148

adopted but the parameter ϕn(xn) from Equation (5.3) is used. Here, a few intuitive

parameters closely related to the final retrieval performance are proposed.

• ρ: an adjusted parameter to balance the ranking scores from different models.

The reason why this parameter is introduced lies in that the ranking scores from

diverse models could have a wide range of values, even if they use the same

modeling method.

• δ : the reliability of a model to the final retrieval performance. This parameter

reveals the retrieval performance of the learning models from the view of the

training instances. Intuitively, the model with good performance will be assigned

a relatively large weight value.

• η: the correlation of an interval of scores within a ranking model to the target

concept. Within the same ranking model, the scores are distributed within a cer-

tain interval. In the case of utilizing probabilistic estimation as the ranking score,

the range of scores is between 0 and 1. Suppose that the range is partitioned into

several intervals, where each interval is disjointed with each other. The different

correlation values between each interval and the target concept imply the way that

the scores from different models should be combined at an interval level.

Based on these intuitive parameters, the proposed fusion model is shown in Equa-

tion (5.4), given a testing image x
′
. Again, assuming there are M models that produce

posterior probability Pm(w|xn) as the ranking score, w is the target concept, and xn

stands for the nth instance.

P(w|x
′
) =

M

∑
m=1

δm ·ηm

δm +ηm

· (ρ−1
m ·Pm(w|x

′
)). (5.4)

The strategy to decide the value of these parameters is given as follows. All of

them are driven by the images in the training set. ρm is introduced to prevent large
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ranking scores from dominating the small scores in the framework, and is decided by

the following equation.

ρm =
1

N

N

∑
n=1

Pm(w|xn). (5.5)

δm is set to be the mean average precision of model m evaluated on the images in the

training set. The method to decide ηm is as follows. First, the intervals are partitioned

from the ranking scores, model by model, based on information entropy maximization

(IEM) [111]. IEM selects the first cut-point that minimizes the entropy function over

all possible candidate cut-points and recursively applies the strategy to both induced

intervals. The minimum description length (MDL) principle is employed to determine

whether to accept a selected candidate cut-point or not, and thus stops the recursion if

the cut-point does not satisfy certain conditions.

Once an intervals of scores is partitioned, the correlation can be captured by ap-

plying MCA. In other words, the inputs of MCA are the partitioned scores from the

content-based and tag-based models, and the output of MCA is the correlation of each

partition to the target concept class for each instance/image. Therefore, ηm could be

determined by Equation (5.6) where MW
I(x
′
)(TC) is the cosine value of the angle be-

tween each interval I(x
′
) where x

′
falls and the target concept class (TC). Then the final

combined score can be calculated by Equation (5.4).

ηm = 0.5 · (1+MW
I(x
′
)(TC)). (5.6)

5.2.2 Integration Subspace Modeling with Latent Local Inter-concept Relation-

ships

The previous framework that considers inter-concept relationships tends to generate

the ranking score from the target concepts by applying the ranking strategy once a ref-

erence concepts is selected. Such a ranking strategy (such as taking the summation of
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the ranking score of the target concept and that of the reference concept) is applied on

all testing instances, which are also commonly adopted by peer works [118, 54]. How-

ever, this ranking strategy cannot always guarantee performance gain after the ranking

strategy is applied. This might be caused by the situation when some positive instances

have their ranking position increased but the negative instances also get their ranking

positive higher. In the case where more negative instances hold relative higher rank-

ing positions than the positive ones, the performance in terms of average precision is

expected to become lower. Therefore, it implies that the ranking strategy needs to

be instance-dependent, which means the ranking strategy should only be applied to

a proportion of the instances that satisfy certain prerequisite of the ranking strategy.

Therefore, a new ranking strategy will be proposed that considers the latent local inter-

concept relationships within the feature-value pairs (some intervals of features), where

the positive instances (containing the target concept) dominates the negative instances

(not containing the target concept).

Figure 5.1 shows the way to search for and find these feature-value pairs with high

positive-to-negative ratios (P/N ratios). Suppose there are N classification models built

for N concepts. For m training instance, each of them has a vector of ranking scores

from N models. The ranking scores of all the m training instances are then applied

with supervised discretization to get a list of feature-value pairs. Then, according to

the training labels of the target concept, those feature-values pairs with high positive-

to-negative ratios can be identified and will be utilized in the ranking strategy.

Figure 5.2 displays an example of applying the proposed ranking strategy on a test-

ing instance T s. After converting T s to a vector of feature-value pairs, which may

contain the list of feature-value pairs identified in the previous step, a ranking strat-

egy is proposed to generate the final ranking score from the ranking score of T out-
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Figure 5.1: Searching for feature-value pairs with high positive-to-negative ratios
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Figure 5.2: Ranking using feature-value pairs with high positive-to-negative ratios

put by the classification model of the target concept. Suppose that F(T s) (F(T s) =

[F1(T s), . . . ,FN(T s)]) is a vector of feature-value pairs after discretization, Fh (Fh =

[F1
h , . . . ,F

q
h ]) is the sorted feature-value pairs with the high P/N ratios listed in an as-

cending manner, which means that the P/N ratio of F
q
h is no less than that of F1

h . The

following code illustrates the proposed ranking strategy:
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THE PROPOSED RANKING STRATEGY

1 Deriving the co-efficiency attached to each feature-value pair in Fh:

2 FOR Each feature-value pair F i
h in Fh

3 Search for β (F i
h), the minimum β that can maximize the average precision

of the ranking result of training set after Equation (5.7) is applied.

4 END

5 Apply ranking strategy on the testing instance:

6 SET final ranking score of RS
′

j to be R j, the ranking score of the j-th testing

instance for the target concept.

7 FOR Each feature-value pair Fi(T s) in F(T s)

8 IF Fi(T s) matches one feature-value pair in Fh

9 RS
′

j=RS
′

j+β (Fi(T s))

10 END

11 END

12 Output RS
′

j as the final ranking score for a testing instance T s.

Rr
′

j = Rr j +δ (Tr j)∗β , (5.7)

where Rr
′

j and Rr j is the ranking scores of the j-th training instance before and after

ranking. δ (Tr j) is 1 if Tr j falls into F i
h and 0, otherwise.
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5.2.3 Improve the Semantic Concept Retrieval Prototype

To facilitate end users to retrieve semantic concepts from images, a web-based semantic

concept retrieval prototype is designed and built in Chapter 4. The prototype allows

users to query an interested semantic concept and get a list of returned images. In the

future, several work will be done in the following aspects:

• include the function of retrieving videos and/or images;

• reduce the model training time and improve the training efficiency.

For the first aspect, the functionality of video retrieval will be included in the current

prototype which only supports the functionality of image retrieval. Since the basic unit

in a video is “shot”, it requires the information of shot boundary within a video, which

implies that a table is required to store the shot boundary information in the database.

With regard to the second aspect, Chapter 3 indicates that the cost of singular value

decomposition (SVD) in subspace modeling is rather expensive and SVD may not be

applicable if the data set is very large. Besides, the K-means clustering method in CLU-

SUMO and CSC-SUMO is also time consuming when dealing with a large scale data

set. To improve the retrieval efficiency of the proposed prototype, future work will

focus on the following two issues when implementing the prototype.

• How to derive eigenvalues and PCs efficiently from the training instances?

• How to cluster data instances quickly into a number of negative groups when

applying K-means clustering?

Recently, with the prosperity of distributed computing methods, it is possible to

perform parallel computing to distribute a task on a list of individual computers. There-

fore, the proposed prototype will take advantages of the parallel computing techniques
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to speed up the process to derive eigenvalues and the generation of negative data groups.

In the prototype, a distributed subspace modeling framework will be developed based

on Hadoop [119], which uses a simple programming model to distribute the processing

of large data sets across clusters of computers. Hadoop divides the whole data into a

number of partitions and distributes them to different processing units. Then the eigen-

values, the PCs, and the cluster centers are calculated in parallel and merged together

to increase the efficiency of the prototype.
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Appendix A

Glossary

3NN K nearest neighbor with K=3

Ada AdaBoost with decision tree kernel

AdaBoost-C4.5 AdaBoost with C4.5 decision tree kernel

AdaBoost-SVM AdaBoost with SVM kernel

AP average precision

ATP attaching proportion

BP backward propagation

BSM binary-class subspace modeling

C4.5 C4.5 decision tree

CCP concept conditional probability

Chi support vector machines with chi-square kernel

CLU-SUMO clustering-based subspace modeling

CML correlative multi-label

CostDTree cost-sensitive decision tree

156
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CP co-occurrence probability

CRSPM collated representative subspace projection

CSC-SUMO class selection and clustering-based subspace modeling

DASD domain adaptive semantic diffusion

DSM dissimilarity measure

F1 F1-score

HOG histograms of oriented gradients

IEM information entropy maximization

IREP incremental reduced error pruning

Java EE Java Platform, Enterprise Edition

JDBC Java Database Connectivity

JR JRip

JSP JavaServer Pages

KNN K-nearest neighbor

LAN local area network

LBP local binary patterns

Logistic logistic regression

MCA multiple correspondence analysis

MDL minimum description length
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MFoM maximal figure-of-merit

MKL multiple kernel learning

MP multilayer perceptron

MSM multi-class subspace modeling

MVC model-view-controller

NB naive Bayes

NIST National Institute of Standards and Technology

NN nearest neighbor

PC principal component

PCA principal component analysis

PCC principal component classifier

PoN probability of negativeness

PoP probability of positiveness

pre precision

R PC representative principal components

RBF radial basis function

rec recall

ResampleLG re-sampling with logistic regression model

RIPPER repeated incremental pruning to produce error reduction
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SIFT scale-invariant feature transform

SMGL subspace-modeling on global and local structures

SMOTE synthetic minority oversampling technique

SVD singular value decomposition

SVM support vector machines

TRECVID TREC Video Retrieval Evaluation
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